Kapcsolatfelvétel

Zöld Energia

Mitől alakulhat ki a napelemes tűz? Szakértő válaszol!

Egy új vizsgálat alapján a tetőszerkezetek meglepően ellenállóak lehetnek a napelemes rendszerek okozta tüzekkel szemben.

Létrehozva:

|

Szakértők egy csoportja azt vizsgálta, hogy miként terjed a tűz a tetőkre telepített napelemes rendszerekben – számol be a PV Magazine. Az eredmények alapján a panelek és a tetők közötti hézagtávolság, valamint a gyújtóforrás mérete kulcsfontosságú. „Munkánk az Underwriters Laboratories (UL) több mint tíz évvel ezelőtti kísérleteiből származó korábbi ismeretekre épül” – mondta a csapat tagja, Reidar Stølen. „A fő különbség az ő munkájukhoz képest az, hogy mi a gyújtóforrást a fotovoltaikus modulok alá helyeztük, hogy olyan tüzet hozzunk létre, amelyet a berendezés elektromos hibája okoz” – tette hozzá. Az adatok alapján ahhoz, hogy a rendszer alatti térben tűz keletkezzen és az továbbterjedjen, bizonyos mennyiségű energiára van szükség. „A szükséges energia mennyisége függ a geometriától, például az üreg távolságától, de az üregben lévő anyagoktól is” – mondta Stølen. A kutatók a hézagtávolságot variálták, de minden vizsgálatban ugyanazt a lejtést és anyagokat használták. A kísérletben acélból készült modulokat használtak, az üregben nem helyeztek el kábeleket vagy más anyagokat, a bitumenes tetőfedő membrán alatt pedig faforgácslap alapot helyeztek el. A tető dőlésszöge 30 fok volt.

A tűz időtartamát a tető egyes részein körülbelül 20 percre korlátozták, a kutatócsoport szerint a 22 mm-es forgácslapból készült tetőszerkezet elegendő tűzállósággal rendelkezett ahhoz, hogy megakadályozza a tűz átterjedését a padlásra. „Ez azt mutatja, hogy nem feltétlenül kell nagyon robusztus szerkezet ahhoz, hogy a tüzet az épületen kívül tartsuk” – emelte ki Stølen. „Ha azonban több tüzelőanyag van az építményben, akkor a tűz időtartamának és a tűzállóságnak hosszabbnak kell lennie” – világított rá.

A szakértők a tűz terjedésének egy másik mechanizmusát is megfigyelték az olvadt és égő bitumenen keresztül. Stølen szerint a lapos tetőkön végzett korábbi kutatásokhoz képest ugyanolyan típusú hatásokat láttak az üregtávolságnál, a fő különbség az, hogy a ferde tetőnél sokkal gyorsabban terjednek a lángok.

Advertisement

 

 

Advertisement

Kép: Journal of Physics, Common License CC BY 4.0

Advertisement

Zöld Energia

Gépi tanulás a napfény szolgálatában: előrejelzések, amelyek spórolnak az energiával

Időjárási változók előrejelzése megújuló energia termeléséhez.

Létrehozva:

|

Szerző:

Töltse ki a napelem-kalkulátort, és tudja meg, mennyibe kerülhet Önnek! Ingyenes kalkulálás itt (x)

A Debreceni Egyetem kutatója az időjárás-előrejelzések olyan statisztikai utófeldolgozásával foglalkozott, mely révén az eddiginél pontosabb előrejelzéseket lehet adni a megújuló energiatermeléshez szükséges időjárási változókra – írja az alternativenergia.hu. Az Informatikai Karon működő, az országban egyedülálló statisztikai utófeldolgozással foglalkozó kutatócsoportnak Baran Ágnes egyetemi docens is tagja. Munkájukat, illetve egy abból készült tudományos publikációt a Gróf Tisza István Debreceni Egyetemért Alapítvány és a Debreceni Egyetem Publikációs Díjjal jutalmazta. Az egyetemi szakemberek nem egy időjárási változó szimpla előrejelzésével foglalkoztak, hanem olyan szempontokat vettek figyelembe a kutatás során, melyeknek jól kimutatható gazdasági hasznosíthatósága is van. Magyarországon folyamatosan erősödik a napenergia jelentősége, egyre bővül a megújuló energiaforrások felhasználási területe. A kutatók 100 méteres magasságban mért szélsebességre és napsugárzásra vonatkozó előrejelzésekre fókuszálva ötvözték a gépi tanulási technikát a hagyományos utófeldolgozási módszerekkel annak érdekében, hogy néhány szélfarmtól és napelemfarmtól, illetve a HungaroMettől származó adatok alapján olyan matematikai modellt fejlesszenek ki, mely a lehető legpontosabb előrejelzéseket képes adni.

– Az adott modellek egyrészt függenek attól, hogy milyen időjárási változót akarunk előre jelezni és természetesen függhetnek a speciális állomásadatoktól is. Nem feltétlenül ugyanazok a modellek működnek egy alföldi állomáson, mint mondjuk az Alpokban, tehát a modellépítésnél arra törekedtünk, hogy a rendszer különböző állomások, más adatok esetén is alkalmazható legyen. A validálást speciálisan a magyar adatokra, a magyar állomásokra szabtuk, valós adatokkal dolgoztunk, így azok egy részét a modell felépítésére, paramétereinek meghatározására, másik felét pedig a tesztelésre használtuk, ezáltal ellenőrizhettük, valóban jó előrejelzéseket képes-e adni az algoritmus. Úgynevezett gördülő tanuló periódussal dolgoztunk, tehát a modell paramétereit, az adott napon inicializált előrejelzéseket mindig az előző valahány nap tapasztalatai, a szél esetén 51, a napsugárzás esetén pedig az előző 30 nap adatai alapján határoztuk meg. Mindig újra kell hangolni a modellt, mindig be kell iktatni egy tanítási fázist. Ennek a munkának egy korábbi verzióját már operatív alkalmazásba helyezte a HungaroMet és ennek használatával készíti az előrejelzéseket – fogalmazott a DE IK egyetemi docense.

Baran Ágnes kiemelte: ez egy nemzetközi szinten is kiemelten kutatott terület, a kutatócsoport közvetlen szakmai kapcsolatban áll a readingi Európai Középtávú Időjárás-előrejelző Központtal, valamint a tématerület egyik legfontosabb tudományos műhelyének számító Heidelberg Institute for Theoretical Studies kutatóközponttal is. Magyarországon a BME-vel működnek együtt a Debreceni Egyetem kutatói. Itthon a gépi tanulással modellezhető időjárás-előrejelzésekkel kapcsolatos kutatásoknak egyelőre nincs nagy múltja, ezzel együtt a DE kutatói hazai viszonylatban úttörőknek számítanak.

Advertisement

Az eredmények jól kimutathatók, mérőszámok segítségével meghatározható, hogy mennyit javított az utófeldolgozási technika a nyers előrejelzéseken. A minél pontosabb előrejelzéseknek anyagi szempontból is komoly tétjük van. – Magyarországon a napelemfarmoknak, energiatermelő központoknak menetrendadási kötelezettségük van, tehát jelezniük kell, mennyi energiát fognak termelni 15 perces időlépésekben egy megadott időhorizontra (48 óra) vonatkozóan, ha azonban ettől lényegesen eltérnek, akkor büntetést kell fizetniük. A prognózis minőségétől függhet az is, hogy kell-e vásárolni energiát, kell-e egyéb forrásokra támaszkodni ezen a téren. A kutatás révén egy olyan új technikát mutattunk be, amit továbbfejlesztve bármelyik időjárási változó esetén pontosíthatjuk az előrejelzéseket. Pontosabban meg lehet tehát állapítani, hogy az előállított elektromos áram mekkora hányada származhat napenergiából és mennyit kell más módszerrel előállítani – tette hozzá a DE IK egyetemi docense.

A two-step machine learning approach to statistical post-processing of weather forecasts for power generation című, GTIDEA és Debreceni Egyetem Publikációs Díjas tanulmány a Brit Királyi Meteorológiai Társaság Quarterly Journal of the Royal Meteorological Society című folyóiratában jelent meg.

Advertisement
Tovább olvasom

Ezeket olvassák