Kapcsolatfelvétel

Zöld Energia

Az aszály ellen segít védekezni egy új fejlesztésű napelem

Napelemek segítségével támogatják egy franciaországi farm termelését.

Létrehozva:

|

A francia Solveo Energies fejlesztő cég egy 3500 négyzetméteren elterülő, 247 kW teljesítményű agrofotovoltaikus létesítményt fejlesztett ki – számol be a PV Magazine. A rendszer a Cultiveo Dynamique algoritmus által vezérelt berendezésekkel büszkélkedhet, és egy, a délnyugat-franciaországi Pyrénées-Orientales-ban található sárgabarackfarm védelmét szolgálja. Az érintett gazdaság egy ideje aszályos időjárással küzd, és alkalmazkodnia kell az éghajlatváltozáshoz, a régióban általános problémát jelent a csapadékhiány. Az agrofotovoltaika lényege, hogy a mezőgazdaságot napelemes energiatermeléssel kombinálják. Megfelelő tervezés esetén a megközelítéssel nemcsak energiakiadásait csökkentheti az érintett gazdaság, hanem a termelését is javíthatja. A Cultiveo Dynamic algoritmus lehetővé teszi a mikroklimatikus szabályozást az árnyék vagy a fény előnyben részesítésével a gyümölcsös igényeinek megfelelően. A rendszer több, a struktúra alá telepített érzékelőt használ, amelyek valós időben figyelik a környezet alakulását.

Elsőbbséget biztosítunk a mezőgazdaságnak, a fénymegosztást úgy terveztük és irányítjuk, hogy megőrizze, sőt intenzív éghajlati események során javítsa a mezőgazdasági termelési feltételeket – emelte ki Pierre Guerrier, a Solveo Energies vezérigazgató-helyettese. Mint hozzátette, a fotovoltaikus energiatermelés feltételeihez igazodnak a panelek kisebb sűrűsége és nagyobb magassága vagy dőlésszögük korlátozása révén.

Clémentine Jardon, a vállalat mérnöke a Francia Agrárkutatási Intézet (INRAE) és a Mezőgazdasági Kutatási és Fejlesztési Nemzetközi Együttműködési Központ (CIRAD) felügyelete mellett fogja nyomon követni a kajszibarackfák növekedését és termelékenységét. A begyűjtött adatokat a Francia Agrárgazdasági Kutatóközpontnak is továbbítják. „Néhány évvel ezelőtt egy hőhullám miatt elvesztettük a gyümölcsösünk egy részét” – nyilatkozta Pierre Pratx, egy másik gazdálkodó, aki szintén a Cultiveo Dynamique rendszerrel gondozza növényeit. „Ezekkel a panelekkel most már meg tudjuk védeni a kajszibarackot az ilyen szélsőséges hőmérsékletektől. A szükségleteknek megfelelően tudjuk majd szabályozni a panelek forgatását: tovább nyithatjuk őket, hogy több napfényt, vagy bezárhatjuk, hogy több árnyékot kapjanak. Vannak hasonló fáink a közelben, hogy összehasonlítást végezhessünk” – mondta.

Advertisement

Zöld Energia

Gépi tanulás a napfény szolgálatában: előrejelzések, amelyek spórolnak az energiával

Időjárási változók előrejelzése megújuló energia termeléséhez.

Létrehozva:

|

Szerző:

Töltse ki a napelem-kalkulátort, és tudja meg, mennyibe kerülhet Önnek! Ingyenes kalkulálás itt (x)

A Debreceni Egyetem kutatója az időjárás-előrejelzések olyan statisztikai utófeldolgozásával foglalkozott, mely révén az eddiginél pontosabb előrejelzéseket lehet adni a megújuló energiatermeléshez szükséges időjárási változókra – írja az alternativenergia.hu. Az Informatikai Karon működő, az országban egyedülálló statisztikai utófeldolgozással foglalkozó kutatócsoportnak Baran Ágnes egyetemi docens is tagja. Munkájukat, illetve egy abból készült tudományos publikációt a Gróf Tisza István Debreceni Egyetemért Alapítvány és a Debreceni Egyetem Publikációs Díjjal jutalmazta. Az egyetemi szakemberek nem egy időjárási változó szimpla előrejelzésével foglalkoztak, hanem olyan szempontokat vettek figyelembe a kutatás során, melyeknek jól kimutatható gazdasági hasznosíthatósága is van. Magyarországon folyamatosan erősödik a napenergia jelentősége, egyre bővül a megújuló energiaforrások felhasználási területe. A kutatók 100 méteres magasságban mért szélsebességre és napsugárzásra vonatkozó előrejelzésekre fókuszálva ötvözték a gépi tanulási technikát a hagyományos utófeldolgozási módszerekkel annak érdekében, hogy néhány szélfarmtól és napelemfarmtól, illetve a HungaroMettől származó adatok alapján olyan matematikai modellt fejlesszenek ki, mely a lehető legpontosabb előrejelzéseket képes adni.

– Az adott modellek egyrészt függenek attól, hogy milyen időjárási változót akarunk előre jelezni és természetesen függhetnek a speciális állomásadatoktól is. Nem feltétlenül ugyanazok a modellek működnek egy alföldi állomáson, mint mondjuk az Alpokban, tehát a modellépítésnél arra törekedtünk, hogy a rendszer különböző állomások, más adatok esetén is alkalmazható legyen. A validálást speciálisan a magyar adatokra, a magyar állomásokra szabtuk, valós adatokkal dolgoztunk, így azok egy részét a modell felépítésére, paramétereinek meghatározására, másik felét pedig a tesztelésre használtuk, ezáltal ellenőrizhettük, valóban jó előrejelzéseket képes-e adni az algoritmus. Úgynevezett gördülő tanuló periódussal dolgoztunk, tehát a modell paramétereit, az adott napon inicializált előrejelzéseket mindig az előző valahány nap tapasztalatai, a szél esetén 51, a napsugárzás esetén pedig az előző 30 nap adatai alapján határoztuk meg. Mindig újra kell hangolni a modellt, mindig be kell iktatni egy tanítási fázist. Ennek a munkának egy korábbi verzióját már operatív alkalmazásba helyezte a HungaroMet és ennek használatával készíti az előrejelzéseket – fogalmazott a DE IK egyetemi docense.

Baran Ágnes kiemelte: ez egy nemzetközi szinten is kiemelten kutatott terület, a kutatócsoport közvetlen szakmai kapcsolatban áll a readingi Európai Középtávú Időjárás-előrejelző Központtal, valamint a tématerület egyik legfontosabb tudományos műhelyének számító Heidelberg Institute for Theoretical Studies kutatóközponttal is. Magyarországon a BME-vel működnek együtt a Debreceni Egyetem kutatói. Itthon a gépi tanulással modellezhető időjárás-előrejelzésekkel kapcsolatos kutatásoknak egyelőre nincs nagy múltja, ezzel együtt a DE kutatói hazai viszonylatban úttörőknek számítanak.

Advertisement

Az eredmények jól kimutathatók, mérőszámok segítségével meghatározható, hogy mennyit javított az utófeldolgozási technika a nyers előrejelzéseken. A minél pontosabb előrejelzéseknek anyagi szempontból is komoly tétjük van. – Magyarországon a napelemfarmoknak, energiatermelő központoknak menetrendadási kötelezettségük van, tehát jelezniük kell, mennyi energiát fognak termelni 15 perces időlépésekben egy megadott időhorizontra (48 óra) vonatkozóan, ha azonban ettől lényegesen eltérnek, akkor büntetést kell fizetniük. A prognózis minőségétől függhet az is, hogy kell-e vásárolni energiát, kell-e egyéb forrásokra támaszkodni ezen a téren. A kutatás révén egy olyan új technikát mutattunk be, amit továbbfejlesztve bármelyik időjárási változó esetén pontosíthatjuk az előrejelzéseket. Pontosabban meg lehet tehát állapítani, hogy az előállított elektromos áram mekkora hányada származhat napenergiából és mennyit kell más módszerrel előállítani – tette hozzá a DE IK egyetemi docense.

A two-step machine learning approach to statistical post-processing of weather forecasts for power generation című, GTIDEA és Debreceni Egyetem Publikációs Díjas tanulmány a Brit Királyi Meteorológiai Társaság Quarterly Journal of the Royal Meteorological Society című folyóiratában jelent meg.

Advertisement
Tovább olvasom

Ezeket olvassák