Zöld Energia
Hogyan hat a forróság a naperőművekre?
A magas hőmérséklet hatást gyakorol a napelemes rendszerek különböző részegységeire. Meghibásodhatnak az inverterek, csökkenhet a napelem modulok hatékonysága, és a cellák meglévő károsodásai súlyosbodhatnak. Azonban a befektetők, tervezők és üzemeltetők több különböző módon igazodhatnak a hőhullámokhoz.
A hőhullámokat egyre gyakrabban megtapasztaló emberekben felmerül a kérdés, hogy vajon a napelemes rendszerek képesek-e az ilyen szélsőséges hőmérsékletek kezelésére. A szélsőségesen meleg időjárás hatást gyakorol a napelemes rendszerek különböző részegységeire. Meghibásodhatnak az inverterek, csökkenhet a fotovoltaikus modulok hatékonysága, és a cellák meglévő károsodásai súlyosbodhatnak. A magas hőmérséklet szintén a modulok gyakoribb megtisztításának feladatát rója a projekteket kezelőkre. Azonban a befektetők, tervezők és üzemeltetők alkalmazkodhatnak a hőhullámokhoz. A kulcs több útmutató követésében rejlik, amelyek meghatározzák az üzemelő fotovoltaikus rendszerek esetében a hő okozta károsodás jelentőségét.
Andreas Kern, a meteocontrol GmbH műszaki konzulense szolgált adatokkal ehhez a tanulmányhoz. Az adatokat a meteocontrol nyomon követési rendszer adatbázisából származó elemzésekkel párosították, amelyet több mint 55 000, a világ minden részén található napelemes rendszerből nyertek ki.
Inverter meghibásodás
Ha egy inverter túlmelegszik, akkor rendszerint automatikusan kikapcsol vagy olyan szintre csökkenti áramellátását, hogy a magasabb környezeti hőmérséklet ne árthasson neki. Ezt a hőmérséklet névleges értékének csökkentésének nevezzük. Az adatbázisból származó egyik példa egy lépéssel ez előtt kezdődik. Figyelembe veszi bizonyos sztring inverterektől érkező figyelmeztető üzeneteket, a Németországban található mintegy 23 000 inverter körülbelül 1300 fotovoltaikus rendszerrel áll kapcsolatban. Ez a táblázat azon inverterek átlagos napi számát mutatja, amelyek a 23 000 inverter közül túlmelegedéssel összefüggő hibaüzenetet küldtek.
Az átlaghőmérséklet növekedésével a túlmelegedésre vonatkozó figyelmeztetések gyakoribbá válhatnak. Azonban az még nem ismert, hogy vajon ez statisztikailag jelentős összefüggésnek minősül-e. 2022 júniusában a túlmelegedésre vonatkozó figyelmeztetések 0,028 százalékot tettek ki a csatlakoztatott inverterek esetében. De a tényleges hibák száma alacsonyabbnak bizonyult. A túlmelegedésnek számos oka lehet – szellőzéssel kapcsolatos problémák, elégtelen szellőzéssel rendelkező helyszínek és magas környezeti hőmérséklet.
A lehetséges okok száma tovább mérsékli az időjárással összefüggő tényezőket. Az adatállomány elemzése megerősíti azt a tapasztalatból fakadó tényt, hogy az inverterek általában ellenállnak a magas hőmérsékletű időszakoknak, amennyiben a telepítés helye megfelelő. Az inverterek hőállóságának további bizonyítéka, hogy a napelemes rendszerek sikeresen működnek Dél-Európában, sőt még a sivatagos régiókban is. Mindazonáltal a túlmelegedésre vonatkozó jelentéseket komolyan kell venni a hozam megtartása érdekében, és hogy a berendezés várható élettartama ne rövidüljön le.
Jelentős mértékben csökken a modulok hatékonysága hőhullámok esetén? A hőmérséklet 3 fokos emelkedése a napelem modulok hatékonyságának 1 százalékos visszaesését vonja maga után. Ennek eredményeként a modulok nyári hatékonysága több százalékkal marad el a télitől, annak ellenére, hogy a napsugárzás értéke nyáron többszöröse, mint télen. Ennek megfelelően a csökkenő hatékonyság okozta veszteségeket bőven ellensúlyozzák a magasabb hozamok. A napos hőhullámok pozitív irányba tolják el a hozamokat.
Rendszerproblémák
A napelemes projektek tervezése során megfelelő telepítési helyet kell találni az inverter számára. A magánszektor kisebb fotovoltaikus rendszereinél nagyobb valószínűséggel fordul elő kevésbé gondosan kiválasztott telepítési hely. Például egy délre néző falra telepített inverter vagy egy árnyékolással nem rendelkező akkumulátoros tároló elkerülhetetlenül túlmelegedéshez vezethet. De tervezési hibának számít az is, amikor kereskedelmi célú fotovoltaikus rendszereknél az invertereket a tetőre vagy árnyékolás nélkül egy modulsor szélére szerelik fel, így átmenetileg közvetlenül napfénynek teszik ki.
Mindenképpen valamilyen árnyékolás szükséges annak biztosításához, hogy az invertert hűvös helyre telepíthessük, és hogy leget tegyünk a gyártó követelményeinek és a vonatkozó szabványoknak. Ez magában foglalja a falaktól számított és az egyes egységek közötti távolságot is. Amikor beruházunk egy napelemes rendszerbe, a tervdokumentáció felülvizsgálata során a napelem szakértőknek ellenőrizniük kell, hogy az invertereket a helyes iparági gyakorlatnak megfelelően telepítették-e.
Hasonlóan már a tervezési szakaszban gondoskodni kell a napelem modulok megfelelő hátsó szellőzéséről. A modulok hátsó szellőzése kiváló nyílt terepen történő elhelyezésnél és emelt kialakítású, tetőn elhelyezett rendszereknél. Ezzel ellenkezőleg a lapos tetős felületeken rendszerint nehezen biztosítható a hátsó szellőzés.
A modulok kiválasztásakor a pornak ellenálló bevonatokat is figyelembe lehet venni, ha rendelkezésre állnak megfelelő modulok. Elméletileg a modulok kiválasztásakor a hőmérsékleti együtthatót is figyelembe vehetjük. Ez az adat a modulok adatlapján szerepel. A gyakorlatban a hőmérsékleti együtthatók között minimális eltérések állnak fenn,
mivel szinte kizárólag szilíciumból készült kristályos modulokat telepítenek. A múltban a modulok kiválasztásánál nagyobb szabadság érvényesült, mivel széles körben elterjedtek voltak az egyéb típusú cellák, például a kadmium-telluridból készültek. Tekintettel az anyagbeszállítások napjainkban fennálló szűk keresztmetszeteire, a modulok paramétereinek kisebb módosítása szinte lehetetlen, mivel az ügyfelek lényegében azzal dolgoznak, amit sikerül beszerezniük.
Üzemeltetési szempontok
Ha egy inverter meghibásodik túlhevülés miatt, a helyszínen először a szellőzést ellenőrizze. Például intézkedni kell az árnyékolás megvalósításáért, ha a helyszíni felülvizsgálat annak hiányát tárta fel.
Nehezebb észlelni a hőmérséklet névleges értékének csökkentése miatti áramveszteséget, amikor az inverter saját áramellátását csökkenti a hő miatt. Az alacsonyabb teljesítményt nehezebb meghatározni nyomon követéssel, ha a hozam elmarad a megcélzott szinttől. A hőmérséklet névleges értékének csökkenését egyértelműen diagnosztizálni lehet a kimenő jellemzők elemzése útján.
A napelem modulok celláinak meglévő károsodását a magas hőmérsékletek súlyosbítják. Ennek megfelelően a hőmérséklet emelkedésével a megelőző intézkedések létjogosultsága nő, mivel már idejekorán megelőzhetik a felületen a hiba terjedése vagy a szennyezett modulok miatti árnyékolást. A termográfiával észlelhetők a foltszerű árnyékolás, a melegpontok és mikrorepedések kialakulása.
A hőhullámok aszállyal párosulnak. Ez bizonyos helyszíneken több port eredményezhet, ami összegyűlhet a modulokon. A modulok öntisztulása az eső hiánya esetén is mérséklődik. Németországban a modulok tisztítása iránti igény idővel elérheti a Spanyolország jelenlegi szintjét. Ott az energia mintegy 2-3%-a vész el a szennyeződések miatt, ezért a kezelők évente kétszer megtisztítják moduljaikat. Németországban a legtöbb esetben a természetes eső elegendő a modulok megtisztításához, mivel az energiának csupán 1%-a vész el.
A körültekintő rendszertervezésre, megfelelő telepítésre és szakszerű karbantartásra támaszkodva a napelemes rendszerek továbbra is megbízhatóan üzemeltethetők. A hővel kapcsolatos hibaforrások nyomon követését be kell építeni a felügyeleti folyamatokba. Azonban hővel kapcsolatos meghibásodás felmerülése esetén az okot nagyon gyorsan azonosítani kell, mert csak így kerülhetők el az alacsonyabb hozamok, valamint a műszaki meghibásodások.
Zöld Energia
Gépi tanulás a napfény szolgálatában: előrejelzések, amelyek spórolnak az energiával
Időjárási változók előrejelzése megújuló energia termeléséhez.
Töltse ki a napelem-kalkulátort, és tudja meg, mennyibe kerülhet Önnek! Ingyenes kalkulálás itt (x)
A Debreceni Egyetem kutatója az időjárás-előrejelzések olyan statisztikai utófeldolgozásával foglalkozott, mely révén az eddiginél pontosabb előrejelzéseket lehet adni a megújuló energiatermeléshez szükséges időjárási változókra – írja az alternativenergia.hu. Az Informatikai Karon működő, az országban egyedülálló statisztikai utófeldolgozással foglalkozó kutatócsoportnak Baran Ágnes egyetemi docens is tagja. Munkájukat, illetve egy abból készült tudományos publikációt a Gróf Tisza István Debreceni Egyetemért Alapítvány és a Debreceni Egyetem Publikációs Díjjal jutalmazta. Az egyetemi szakemberek nem egy időjárási változó szimpla előrejelzésével foglalkoztak, hanem olyan szempontokat vettek figyelembe a kutatás során, melyeknek jól kimutatható gazdasági hasznosíthatósága is van. Magyarországon folyamatosan erősödik a napenergia jelentősége, egyre bővül a megújuló energiaforrások felhasználási területe. A kutatók 100 méteres magasságban mért szélsebességre és napsugárzásra vonatkozó előrejelzésekre fókuszálva ötvözték a gépi tanulási technikát a hagyományos utófeldolgozási módszerekkel annak érdekében, hogy néhány szélfarmtól és napelemfarmtól, illetve a HungaroMettől származó adatok alapján olyan matematikai modellt fejlesszenek ki, mely a lehető legpontosabb előrejelzéseket képes adni.
– Az adott modellek egyrészt függenek attól, hogy milyen időjárási változót akarunk előre jelezni és természetesen függhetnek a speciális állomásadatoktól is. Nem feltétlenül ugyanazok a modellek működnek egy alföldi állomáson, mint mondjuk az Alpokban, tehát a modellépítésnél arra törekedtünk, hogy a rendszer különböző állomások, más adatok esetén is alkalmazható legyen. A validálást speciálisan a magyar adatokra, a magyar állomásokra szabtuk, valós adatokkal dolgoztunk, így azok egy részét a modell felépítésére, paramétereinek meghatározására, másik felét pedig a tesztelésre használtuk, ezáltal ellenőrizhettük, valóban jó előrejelzéseket képes-e adni az algoritmus. Úgynevezett gördülő tanuló periódussal dolgoztunk, tehát a modell paramétereit, az adott napon inicializált előrejelzéseket mindig az előző valahány nap tapasztalatai, a szél esetén 51, a napsugárzás esetén pedig az előző 30 nap adatai alapján határoztuk meg. Mindig újra kell hangolni a modellt, mindig be kell iktatni egy tanítási fázist. Ennek a munkának egy korábbi verzióját már operatív alkalmazásba helyezte a HungaroMet és ennek használatával készíti az előrejelzéseket – fogalmazott a DE IK egyetemi docense.
Baran Ágnes kiemelte: ez egy nemzetközi szinten is kiemelten kutatott terület, a kutatócsoport közvetlen szakmai kapcsolatban áll a readingi Európai Középtávú Időjárás-előrejelző Központtal, valamint a tématerület egyik legfontosabb tudományos műhelyének számító Heidelberg Institute for Theoretical Studies kutatóközponttal is. Magyarországon a BME-vel működnek együtt a Debreceni Egyetem kutatói. Itthon a gépi tanulással modellezhető időjárás-előrejelzésekkel kapcsolatos kutatásoknak egyelőre nincs nagy múltja, ezzel együtt a DE kutatói hazai viszonylatban úttörőknek számítanak.
Az eredmények jól kimutathatók, mérőszámok segítségével meghatározható, hogy mennyit javított az utófeldolgozási technika a nyers előrejelzéseken. A minél pontosabb előrejelzéseknek anyagi szempontból is komoly tétjük van. – Magyarországon a napelemfarmoknak, energiatermelő központoknak menetrendadási kötelezettségük van, tehát jelezniük kell, mennyi energiát fognak termelni 15 perces időlépésekben egy megadott időhorizontra (48 óra) vonatkozóan, ha azonban ettől lényegesen eltérnek, akkor büntetést kell fizetniük. A prognózis minőségétől függhet az is, hogy kell-e vásárolni energiát, kell-e egyéb forrásokra támaszkodni ezen a téren. A kutatás révén egy olyan új technikát mutattunk be, amit továbbfejlesztve bármelyik időjárási változó esetén pontosíthatjuk az előrejelzéseket. Pontosabban meg lehet tehát állapítani, hogy az előállított elektromos áram mekkora hányada származhat napenergiából és mennyit kell más módszerrel előállítani – tette hozzá a DE IK egyetemi docense.
A two-step machine learning approach to statistical post-processing of weather forecasts for power generation című, GTIDEA és Debreceni Egyetem Publikációs Díjas tanulmány a Brit Királyi Meteorológiai Társaság Quarterly Journal of the Royal Meteorological Society című folyóiratában jelent meg.
-
Zöld Közlekedés1 nap telt el a létrehozás ótaElektromos járművek: most éri meg igazán váltani
-
Zöldinfó6 nap telt el a létrehozás ótaIngyenes hőszigetelés és bónuszrendszer: új lendületben a hazai épületfelújítás
-
Zöld Energia1 hét telt el a létrehozás ótaA napenergia mellé tárolók kellenek: új irányt jelöltek ki
-
Zöld Energia6 nap telt el a létrehozás ótaEnergiatárolás: ki pályázhat a 2,5 milliós állami támogatásra?
-
Zöldinfó5 nap telt el a létrehozás ótaVízre hangolt jövő: Debrecen átfogó fejlesztésekkel válaszol a klímaváltozás kihívásaira
