Kapcsolatfelvétel

Zöld Energia

Magas hatásfokú invertereket mutattott be a Kaco New Energy

A Kaco New Energy két új inverterről rántotta le a leplet, a termékek kifejezetten kereskedelmi és ipari alkalmazásra készültek.

Létrehozva:

|

Új, szilícium-karbid invertereket mutatott be a német Kaco New Energy – számol be a PV Magazine. Az eszközök hatásfoka 99,1 százalék, közép-európai klímán pedig 98,7 százalék.

Az 1999-ben alapított Kaco New Energy invertergyártásra szakosodott. Két, újonnan kifejlesztett inverterre kifejezetten kereskedelmi és ipari napenergia-projektekben való alkalmazásra készült. „Az inverterek magas szintű jövedelmezőséget biztosítanak az összetett napelemes tetők esetében, és olyan egyedi előnyöket nyújtanak, mint a 200 százalékos túlméretezés” – olvasható a gyártó közleményében.

A két készülék közül az egyik, a 100 NX3 M8 nyolc MPP-követővel rendelkezik. A termék 200 kilowatt maximális fotovoltaikus teljesítmény mellett működik, az MPP-tartománya pedig 550 és 850 volt között van. 200 és 1000 volt közötti működési tartománya és MPP-követőnként 30 amper maximális bemeneti áram jellemzi. A termék hatásfoka 99,1 százalék, méretei 740-szor 1023-szor 330 milliméter, tömege pedig 84 kilogramm.

A második inverter, a 125 NX3 M10 10 MPP-követővel van felszerelve. Maximális bemeneti teljesítménye 250 kilowatt, az MPP-tartománya pedig megegyezik a 100 NX3 M8 inverterével. Mérete, súlya és hatásfokai is azonosak. Az inverterek -25 és 60 Celsius-fok közötti hőmérséklet-tartományban működnek, IP66-os védettséggel és hőmérséklet-szabályozott ventilátorral történő hűtéssel.

„A blueplanet 100 NX3 és 125 NX3 félvezetőként szilíciumkarbidot (SiC) használ” – nyilatkozta a Kaco New Energy képviselője a PV Magazine-nak. „Ez magasabb kapcsolási frekvenciát és nagyobb hőmérséklet-tűrést tesz lehetővé. Ennek eredményeképpen az inverterek páratlan, 99,1 százalékos hatékonyságot érnek el, és lapos teljesítményleépítéssel rendelkeznek. Még 50 Celsius-fok feletti hőmérsékleten sem kapcsolnak ki – a hasonló eszközökkel ellentétben –, hanem csupán fokozatosan csökkentik a teljesítményüket” – tette hozzá.

Advertisement

Zöld Energia

Új típusú energiatárolót dolgoztak ki

A spanyol kutatók egyelőre egy prototípust hoztak létre az új technológia segítségével.

Létrehozva:

|

Szerző:

Spanyol kutatók olyan új hőenergia-tároló rendszert (TES) terveztek, amely termoelektromos hőszivattyút (TEHP) használ az áram hővé történő átalakításához – számol be a PV Magazine. A hőszivattyút a változó vezetőképességű hőcsövek alternatívájaként használják.

Az újszerű kialakítás négy fő komponenst tartalmaz, nevezetesen egy termoelektromos hőszivattyúrendszert, egy elektromos ellenállást, egy TES-ciklust, valamint egy nyílt hurkot, amelyben a levegő a hőátadó közeg. A rendszer levegőjét a termoelektromos hőszivattyú melegíti fel, amely termoelektromos modulokat használ, kiegészítve az elektromos ellenállással.

A berendezés termoelektromos része hat TEHP-blokkból épül fel. Az első három egyfokozatú termoelektromos hőszivattyú (OTEHP) konfigurációt alkalmaz, mindegyik egy-egy TEM-et használ, mindkét oldalon egy-egy hőcserélővel. A következő három blokk kétfokozatú hőelektromos hőszivattyú (TTEHP), piramis alakú konfigurációval. Ennek a köztes hőcserélőnek a kialakítása egy nagyhatékonyságú, négy hőcsőből álló rendszert használ, amelyben munkafolyadékként víz van. A hőátadás az első fokozatból a második fokozatba ezeken a csöveken keresztül, a víz halmazállapot-változása révén történik.

A kutatók egy rendszerprototípust is létrehoztak, amelyen 45 forgatókönyvet teszteltek különböző feszültségekkel, bemeneti hőmérsékletekkel, illetve és légáramlási sebességekkel. A feszültségek 4, 6, 8 vagy 10 volt, a bemeneti hőmérséklet 120, 160 vagy 200 Celsius-fok, a légáramlási sebesség pedig 13, 18 vagy 23 köbméter per óra volt, utóbbi esetén 655,5 wattnyi hőt termeltek 1,35 COP mellett.

A kifejlesztett TEHP-rendszer integrálása egy elektromos ellenálláson alapuló hőenergiatároló rendszer töltési folyamatába 15, illetve 30 százalékkal növeli az energiaátalakítás hatékonyságát 120 és 200 Celsius-fok közötti energiatárolási hőmérséklet esetén. A javasolt rendszerkonfiguráció 135 Celsius-fokon 112,6 százalékos hatásfokot érhet el. A csapat következő céljai között szerepel, hogy a rendszer viselkedését változó hidegforrás-hőmérséklet esetén is teszteljék.

Advertisement
Tovább olvasom

Ezeket olvassák

© 2022 zoldtrend.hu | Minden jog fenntartva!