Kapcsolatfelvétel

Zöld Energia

EM: az újévben életbe lépnek a szélerőművek telepítését megkönnyítő rendelkezések

A kormány a zöldenergia fokozott hasznosítása érdekében nagymértékben enyhítette a szélkerekek létesítésének jogszabályi feltételrendszerét. Az előírt védőtávolság az európai gyakorlatnak megfelelően 700 méterre csökken. A megújított törvényi keretekhez igazodó rendeleti szintű részletszabályok kihirdetésével január elsejével megszűnik a pályáztatási követelmény – közölte az Energiaügyi Minisztérium (EM) pénteken az MTI-vel.

Létrehozva:

|

Kiemelték, hogy a továbbiakban nem kell alkalmazni a szélerőművekre kiadható hatósági engedélyek számára és az engedélyezhető összes teljesítményre vonatkozó korlátozásokat sem. A rendelkezések a kormány elvárása szerint erős garanciákat rögzítenek a települési, környezet-, termőföld- és tájképvédelmi szempontok érvényesítéséhez is. A közlemény szerint a Magyar Közlönyben megjelent módosítások értelmében a beépítésre szánt területen és annak határától számított 700 méteres védőzónán belül nem lehet elhelyezni szélerőművet és szélerőmű parkot. Kivételt képeznek a nemzetgazdasági szempontból kiemelt jelentőségű beruházás megvalósítására szolgáló ipari területek. A védőzónán kívül sem létesíthető szélkerék a kiváló termőhelyi adottságú szántók, a tájképvédelmi vagy a világörökségi és világörökségi várományos területek, az országos ökológiai hálózat övezetében.

A kormány könnyített térségeket jelölhet ki olyan területeken, ahol a szél energiaintenzitása 150 méteres magasságban meghaladja a négyzetméterenkénti 500 wattot. A kijelölés gyorsított engedélyezést jelenthet: a környezetvédelmi és építési engedélyezési eljárásban az eljáró hatóság ügyintézési határideje legfeljebb 50 nap. A települési önkormányzat a helyi építésügyi szabályzatában azonosíthatja be a szélerőművek telepítésére szánt területet, amelyen az általános építménymagassági korlátot nem kell alkalmazni. A szabályzatok tervezeteit a kormányhivatalok és az állami főépítészek is véleményezik. A helyi építési szabályzat elfogadása után az 5-49 megawatt (MW) kapacitású szélerőmű telepítésére szánt területet a vármegyei területrendezési tervben megújuló energia telepítésére szánt övezetként szükséges átsorolni. Az ennél nagyobb kapacitású szélerőműnél a módosítást az országos területrendezési tervben kell átvezetni. A beruházó a területrendezési terv módosítását kezdeményezheti vagy a fővárosi és vármegyei kormányhivatalnál területrendezési hatósági eljárást indítványozhat. A szélerőmű az ezt követő szakági engedélyeztetési eljárások eredményes lezárása esetén épülhet meg.

A magyar gazdaság jövője a zöldenergia. A szélerőművek időjárásfüggő megújuló energiaforrásként hasznosan egészíthetik ki a lendületesen felfutó hazai napelemes termelést. A felülvizsgálat alatt álló Nemzeti Energia- és Klímaterv a jelenleg mintegy 330 megawattnyi szélenergia kapacitás háromszorozása növelésével számol 2030-ig. A zöldenergia termelése mellett a kormány lakossági és ipari pályázattal is ösztönzi annak eltárolását is. A január közepén megnyíló kiírások összesen 137 milliárd forintos keretösszeggel segítik a családokat és vállalkozásokat új energiatárolói kapacitások kiépítésében – olvasható a minisztérium közleményében.

Zöld Energia

Új fúziós rekord a JET berendezés utolsó trícium üzemanyaggal végzett kísérleteiben

Magyar kutatók és mérnökök a HUN-REN Energiatudományi Kutatóközpontból, több mint 20 évig vettek részt a JET kísérleteiben.

Létrehozva:

|

Szerző:

A Joint European Torus (JET), a világ egyik legnagyobb fúziós berendezése, fúziós energiát állított elő és megdöntötte az egy plazma kisülésben megtermelt fúziós energia világrekordját. Ezek a kiemelkedő eredmények jelentős állomást jelentenek a békés célú magfúziós kutatásokban mind fizikai, mind mérnöki szempontból.

A JET utolsó deutérium-trícium kísérletei (DTE3) során a rekord kisülésben 5,2 másodpercen keresztül szabadult fel folyamatosan a fúziós energia, ami 69,26 megajoule hőenergiát eredményezett, mindössze 0,21 milligramm üzemanyag felhasználásával. A JET egy tokamak típusú berendezés, amely erős mágneses teret használ egy úszógumi alakú plazma összetartására. Dr. Fernanda Rimini, a JET Senior Exploitation Manager és JET Scientific Operations vezetője elmondta: „Egyedülálló módon képesek vagyunk rutinszerűen létrehozni fúziós plazmákat ugyanazzal az üzemanyagkeverékkel, amelyet a későbbi kereskedelmi erőművek használnak majd. A JET ezzel is bizonyítja a több évtizedes kutatóprogram sikerét.”

A fúziós energiatermelésre irányuló kutatásokban leggyakrabban a két nehéz hidrogénváltozatot, a deutérium és a trícium gázokat használnak üzemanyagként. Amikor a deutérium és a trícium egyesül, hélium és hatalmas mennyiségű energia szabadul fel – ez a reakció a jövőbeli fúziós erőművek alapja.

Ambrogio Fasoli professzor, az EUROfusion programvezetője (vezérigazgató) azt mondta: „A jövőbeli nagy fúziós berendezések, például az ITER és a DEMO alap működésének sikeres demonstrációja növeli a fúziós fejlesztésekbe vetett bizalmat. Ezt az erőfeszítést az új energiarekord elérése is hitelesíti. Az új rekord felállításán túl olyan dolgokat is elértünk, amelyeket korábban soha, és kísérletek mellett elmélyítettük a fúziós plazma viselkedését leíró fizika tudásunkat.”

Dr. Zoletnik Sándor, a HUN-REN Energiatudományi Kutatóközpont, Fúziós Plazmafizika Laboratóriumának vezetője a magyar hozzájárulást méltatta: A magyar kutatók és mérnökök több mint 20 éve vesznek részt a JET-en végzett tudományos kutatásokban, többek között egy gyorskamera rendszer és egy atomnyaláb diagnosztika fejlesztése, üzemeltetése és adatainak interpretációja volt a feladatunk. Bár decemberben a berendezés 40 év munkaviszony után nyugdíjba vonult, a munka nem állt meg: a JET adatainak kiértékelése még hosszú éveket vesz majd igénybe, öröksége pedig a fúziós reaktorok következő generációin is érezteti majd hatását.

Advertisement

Az EUROfusion(amelynek A HUN-REN Energiatudományi Kutatóközpont a magyar tagja) több mint 300 tudóst és mérnököt foglalkoztat az Egyesült Királyság Atomenergia Hatóságának (UKAEA) oxfordi telephelyén, akik mind hozzájárultak ezekhez a mérföldkőnek számító kísérletekhez, bizonyítva a JET nemzetközi csapatának páratlan elkötelezettségét és szakértelmét.

Az eredmények megerősítették, hogy a JET kulcsszerepet játszott az utóbbi évtizedek fúziós kutatásaiban, amik majd elvezetnek egy biztonságos, alacsony szén-dioxid-kibocsátású és fenntartható energiaforrás kifejlesztéséhez a jövő számára. Sir Ian Chapman, a UKAEA vezérigazgatója azt mondta: „A JET olyan közel működött az erőművi körülményekhez, amennyire csak lehetséges egy mai berendezéssel, és az öröksége minden jövőbeli erőműre hatással lesz. Kritikus szerepe van abban, hogy közelebb hozzon minket egy biztonságos és fenntartható jövőhöz.”

A JET kutatási eredményei közvetlen következményekkel járnak nemcsak az ITER – a Dél-Franciaországban épülő fúziós reaktor – számára, hanem az Egyesült Királyság STEP prototípus erőművére, az európai demonstrációs erőműre (DEMO), és más globális fúziós projektekre, amelyek mind a biztonságos, alacsony szén-dioxid-kibocsátású és fenntartható energiatermelést célozzák a jövőben.

Pietro Barabaschi, az ITER főigazgatója, azt mondta: „A JET rendkívül hasznos volt az ITER előfutáraként: új anyagok tesztelésében, új komponensek innovatív fejlesztésében, és különösképpen a deutérium-trícium üzemanyaggal végzett fúziós kísérlek mérési adatainak előállításában. Itt elért eredmények közvetlen és jelentős hatással vannak az ITER projektre, igazolják, hogy jó irányba haladunk, és lehetővé teszik, hogy gyorsabban érjük el céljainkat. Személyes megjegyzésként szeretném hozzáfűzni, hogy számomra nagy megtiszteltetés volt néhány évig a JET-nél dolgozni, ahol sok kivételes embertől tanulhattam.”

A JET több mint négy évtizeden át játszott kulcsszerepet a fúziós program előmozdításában, jelképezve a nemzetközi tudományos együttműködést, a mérnöki kiválóságot és az elkötelezettséget a fúziós energiatermelés kiaknázására. A reaktorban lezajló folyamatok hasonlóak ahhoz, mely a Napot és a csillagokat is táplálják. A JET 2021-ben világrekordot állított fel, 2023-ban pedig 5 másodpercen keresztül tartó nagy teljesítményű fúziós energiatermelés lehetőségét demonstrálta. A JET első deutérium-trícium kísérletei 1997-ben zajlottak.

Advertisement

A berendezés átlép életciklusa végső szakaszába, amikor leszerelik és újrahasznosítják az arra alkalmas részeket. 2024 februárjában azonban egy ünnepséggel tisztelegnek majd az alapítók előrelátása és az együttműködés szelleme előtt melyek sikerre vitték a berendezést. A JET által elért eredmények – a jelentős tudományos mérföldkövektől az energetikai rekordok felállításáig – a létesítmény időtálló örökségét bizonyítják a fúziós technológia fejlődésének történetében. Hozzájárulása a fizikai és mérnöki tudományokhoz döntő szerepet játszott a fúziós energia fejlesztésének felgyorsításában, amely biztonságos, alacsony szén-dioxid-kibocsátású és fenntartható része lesz a világ jövőbeli energiaellátásának.

A fúziós energia üzemanyagáról

A deutérium bőségesen rendelkezésre áll, és kinyerhető a vízből. A trícium a hidrogén radioaktív változata, körülbelül 12 éves felezési idővel. A trícium előállítható például lítiumból.

Az utolsó deutérium-trícium kísérletekről (DTE3)

A deutérium és a trícium üzemanyaggal végzett kísérletek harmadik köre 2023 augusztus 31-től október 14-ig tartott hét héten keresztül. Három területre összpontosítottak: plazmafizika, anyagtudomány és neutron méréstechnika. A JET fúziós energia rekordja annak köszönhető, hogy sikerült megfelelő tapasztalatot szerezni a deutérium-trícium plazmák üzemeltetésében. Ezeket a kísérleteket elsősorban arra tervezték, demonstrálják azt az üzemmódot deutérium-trícium környezetben, ami berendezés falát érő hőterhelést minimálisra csökkenti. Ezek az eredmények kulcsfontosságúak lesznek az ITER plazma üzemmódjainak tervezéséhez.

Advertisement

40 év fúziós tudomány

A JET a világ eddigi legnagyobb és legsikeresebb fúziós kísérlete volt, az Európai Fúziós Program központi kutatóintézete. A JET a Culham-i UKAEA kampuszon található, ahol több mint 31 európai laboratórium együttműködése eredményeként üzemelt a EUROfusion konzorcium irányításával – európai szakértők, diákok és tudományos személyzet részvételével -, az Európai Bizottság társfinanszírozásával. 1983-as alapítása óta a JET áttörő eredményeket ért el a biztonságos, alacsony szén-dioxid-kibocsátású és fenntartható fúziós energiatermelés felé vezető úton, mely válasz lehet a világ jövőbeli energiaszükségleteire.

Működése során a JET kulcsfontosságú eredményeket szolgáltatott a fúziós plazma bonyolult viselkedéséről, lehetővé téve a tudósoknak az ITER, a nemzetközi fúziós kísérlet, és a DEMO, az európai fúziós közösség által jelenleg tervezett demonstrációs fúziós erőmű tervezését. Az európai együttműködésben felépített és közösen üzemeltett JET 2021 októberében az UKAEA tulajdonába került. Júniusban ünnepelte fennállásának 40. évfordulóját, és 2023 végén fejezte be tudományos működését.

A fúziós energia potenciálja

A fúzió, amely a csillagok, így a mi Napunk energiaforrása is, tiszta, alaperőművi energiaellátást ígér hosszú távon, kis mennyiségű üzemanyag felhasználásával, mely világszerte egyenletesen elérhető, illetve olcsó anyagokból előállítható.

Advertisement

A deutérium és a trícium az egyszerű hidrogén atom két nehezebb variánsa, azért választjuk ezeket üzemanyagnak, mert ezeknek a legkönnyebben megvalósítható földi körülmények között a egyesülése. A 150 millió Celsius-fokos hőmérsékleten a deutérium és a trícium fúzionál, és egy hélium atommag, illetve egy neutron keletkezik hatalmas energiafelszabadulás mellet, bármilyen üvegházhatású gázkibocsátás nélkül. A fúzió eredendően biztonságos, mivel az energiatermelés nem tud megszaladni, és nem termel hosszú felezési idejű, nagy aktivitású radioaktív hulladékot.

Forrás: Energiatudományi Kutatóközpont

Tovább olvasom

Ezeket olvassák

© 2022 zoldtrend.hu | Minden jog fenntartva!