Kapcsolatfelvétel

Zöld Energia

Hatalmas téglákkal tárolhatjuk a megújuló energiát

Létrehozva:

|

Egyre fontosabbá válik, hogy a megújuló energiaforrások által előállított áramot valamilyen módon el tudjuk tárolni későbbi felhasználásra. Egy svájci cég megoldása ebben segíthet.

Egy svájci székhelyű vállalat olyan tornyot fejlesztett ki, amely a gravitációs energia révén képes elraktározni az energiát, írta az alternativenergia.hu. A platform a közelmúltban jelentős támogatást kapott. A megújuló energiák egyre több területet hódítanak meg, az alternatív megoldások előtt azonban sok akadály áll. Az egyik problémát a hálózat számára felesleges áram tárolása jelenti, ebben jelenthet segítséget egy svájci székhelyű energetikai cég platformja. Az Energy Vault a közelmúltban 100 millió dolláros (mintegy 29 milliárd forintos) támogatást szerzett EVx típusú tornya számára. A rendszer képes elraktározni a hálózatból érkező energiát gravitációs potenciális energia formájában. A befektetést a Prime Movers Lab vezeti, a további támogatók a SoftBank, a Saudi Aramco, a Helena és az Idealab X. Az Energy Vault az összegből felgyorsíthatja az EVx telepítését amerikai, közel-keleti, európai és ausztráliai ügyfelei számára. Az első platformot 2021 utolsó negyedévében telepíthetik az Egyesült Államokban, 2022-ben pedig világszerte felgyorsulhat a folyamat.

Az EVx egy hat karból álló darutorony, amelyet arra terveztek, hogy hálózati méretű, megújuló energiaforrásokon alapuló erőművek lássák el árammal. A rendszer elektromotorok segítségével hatalmas téglákat emel fel, így hozva létre gravitációs energiát. Amikor a hálózatnak ismét áramra van szüksége, a blokkokat leengedik, és a felszabaduló mozgási energiát hasznosítják. A téglák tárolókapacitására zéró degradáció jellemző, ráadásul akármennyi ideig a magasban maradhatnak. Az Energy Vault szerint a blokkokat helyi földből, illetve szemétlerakókba vagy szemétégetőkbe szánt anyagokból gyártják le. A felhasznált alapanyagok közé tartoznak a hamu, a bányászat során keletkező zagydarabok, valamint szélturbinák darabjai.

A vállalat 2020-ban kezdte el telepíteni energiatároló-rendszerének első kereskedelmi méretű darabját, az új EVx platform pedig tavaly áprilisban mutatkozott be. A torony hatékonysága 80-85 százalékos, és 35 éven át működőképes lehet. A rendszer a cég szerint skálázható, a hosszabb és a rövidebb távú tárolási igényeket pedig egyaránt gazdaságosan kielégítheti. Mivel a globális lítium-ellátás folyamatosan csökken, a hasonló alternatív megoldásoknak valószínűleg egyre komolyabb szerep jut majd a piacon.

Zöld Energia

Új típusú energiatárolót dolgoztak ki

A spanyol kutatók egyelőre egy prototípust hoztak létre az új technológia segítségével.

Létrehozva:

|

Szerző:

Spanyol kutatók olyan új hőenergia-tároló rendszert (TES) terveztek, amely termoelektromos hőszivattyút (TEHP) használ az áram hővé történő átalakításához – számol be a PV Magazine. A hőszivattyút a változó vezetőképességű hőcsövek alternatívájaként használják.

Az újszerű kialakítás négy fő komponenst tartalmaz, nevezetesen egy termoelektromos hőszivattyúrendszert, egy elektromos ellenállást, egy TES-ciklust, valamint egy nyílt hurkot, amelyben a levegő a hőátadó közeg. A rendszer levegőjét a termoelektromos hőszivattyú melegíti fel, amely termoelektromos modulokat használ, kiegészítve az elektromos ellenállással.

A berendezés termoelektromos része hat TEHP-blokkból épül fel. Az első három egyfokozatú termoelektromos hőszivattyú (OTEHP) konfigurációt alkalmaz, mindegyik egy-egy TEM-et használ, mindkét oldalon egy-egy hőcserélővel. A következő három blokk kétfokozatú hőelektromos hőszivattyú (TTEHP), piramis alakú konfigurációval. Ennek a köztes hőcserélőnek a kialakítása egy nagyhatékonyságú, négy hőcsőből álló rendszert használ, amelyben munkafolyadékként víz van. A hőátadás az első fokozatból a második fokozatba ezeken a csöveken keresztül, a víz halmazállapot-változása révén történik.

A kutatók egy rendszerprototípust is létrehoztak, amelyen 45 forgatókönyvet teszteltek különböző feszültségekkel, bemeneti hőmérsékletekkel, illetve és légáramlási sebességekkel. A feszültségek 4, 6, 8 vagy 10 volt, a bemeneti hőmérséklet 120, 160 vagy 200 Celsius-fok, a légáramlási sebesség pedig 13, 18 vagy 23 köbméter per óra volt, utóbbi esetén 655,5 wattnyi hőt termeltek 1,35 COP mellett.

A kifejlesztett TEHP-rendszer integrálása egy elektromos ellenálláson alapuló hőenergiatároló rendszer töltési folyamatába 15, illetve 30 százalékkal növeli az energiaátalakítás hatékonyságát 120 és 200 Celsius-fok közötti energiatárolási hőmérséklet esetén. A javasolt rendszerkonfiguráció 135 Celsius-fokon 112,6 százalékos hatásfokot érhet el. A csapat következő céljai között szerepel, hogy a rendszer viselkedését változó hidegforrás-hőmérséklet esetén is teszteljék.

Advertisement
Tovább olvasom

Ezeket olvassák

© 2022 zoldtrend.hu | Minden jog fenntartva!