Kapcsolatfelvétel

Zöld Energia

Itt az akkumulátor, amely erkélynapelemmel kombinálható

A kínai TSUN új akkumulátora, a TSOL-B1000 egyik különlegessége a bővíthetősége.

Létrehozva:

|

A kínai TSUN invertergyártó szerint új lakossági energiatároló-rendszere ideális megoldás az erkélynapelemek számára – számol be a PV Magazine. Az akkumulátor maximális bemeneti teljesítménye 1200 watt, maximális kimeneti teljesítménye pedig 800 watt.

A TSUN új, DC-kapcsolt lakossági akkumulátora a TSOL-B1000 nevet viseli, a rendszer beltéri és kültéri környezetben egyaránt alkalmazható, és a gyártó szerint ideális megoldás az erkélyre telepített napelemes eszközök számára. Az ilyen rendszerek jellemzően egy-egy háztartási berendezés áramigényét képesek fedezni, egy akkumulátor révén viszont a technológia használata sokkal kényelmesebbé válhat.

„Az új rendszer modulárisan egymásra helyezhető kialakítással rendelkezik a rugalmas bővítés érdekében” – nyilatkozta a cég szóvivője. „Egyedi kapacitása 1024 wattóra, a felhasználók akár négy bővítő modult is egymásra helyezhetnek, ami összesen 4096 wattóra kapacitást eredményez, ez már elegendő egy 3-5 fős háztartás energiaigényének kielégítésére” – tette hozzá.

Az akkumulátor mérete 330-szor 210-szer 195 milliméter, tömege pedig 11 kilogramm. Maximális bemeneti teljesítménye 1200 watt, maximális kimeneti teljesítménye pedig 800 watt, a berendezés 20 és 50 volt közötti kimeneti feszültségtartományt kínál. Az akkumulátor élettartama állítólag több mint 6000 ciklus, és töltés közben 0 és 45 Celsius-fok közötti hőmérsékleten, kisütéskor pedig mínusz 10 és plusz 45 Celsius-fok közötti hőmérsékleten működik. Az akkumulátor IP55 védettségű, és a kínai CATL akkumulátorgyártó óriáscég celláival van felszerelve.

A 2,4G WiFi vezeték nélküli kommunikációs technológia integrálásával a felhasználók hozzáférhetnek a valós idejű felügyeleti és vezérlési lehetőségekhez. Az eszköz használói a TSUN Smart alkalmazáson keresztül nyomon követhetik az energiafelhasználást, megkönnyítve az azonnali vezérlést és a beállításokat az energiahatékonyság maximalizálása érdekében a tényleges felhasználásnak megfelelően.

Advertisement

Zöld Energia

Új típusú energiatárolót dolgoztak ki

A spanyol kutatók egyelőre egy prototípust hoztak létre az új technológia segítségével.

Létrehozva:

|

Szerző:

Spanyol kutatók olyan új hőenergia-tároló rendszert (TES) terveztek, amely termoelektromos hőszivattyút (TEHP) használ az áram hővé történő átalakításához – számol be a PV Magazine. A hőszivattyút a változó vezetőképességű hőcsövek alternatívájaként használják.

Az újszerű kialakítás négy fő komponenst tartalmaz, nevezetesen egy termoelektromos hőszivattyúrendszert, egy elektromos ellenállást, egy TES-ciklust, valamint egy nyílt hurkot, amelyben a levegő a hőátadó közeg. A rendszer levegőjét a termoelektromos hőszivattyú melegíti fel, amely termoelektromos modulokat használ, kiegészítve az elektromos ellenállással.

A berendezés termoelektromos része hat TEHP-blokkból épül fel. Az első három egyfokozatú termoelektromos hőszivattyú (OTEHP) konfigurációt alkalmaz, mindegyik egy-egy TEM-et használ, mindkét oldalon egy-egy hőcserélővel. A következő három blokk kétfokozatú hőelektromos hőszivattyú (TTEHP), piramis alakú konfigurációval. Ennek a köztes hőcserélőnek a kialakítása egy nagyhatékonyságú, négy hőcsőből álló rendszert használ, amelyben munkafolyadékként víz van. A hőátadás az első fokozatból a második fokozatba ezeken a csöveken keresztül, a víz halmazállapot-változása révén történik.

A kutatók egy rendszerprototípust is létrehoztak, amelyen 45 forgatókönyvet teszteltek különböző feszültségekkel, bemeneti hőmérsékletekkel, illetve és légáramlási sebességekkel. A feszültségek 4, 6, 8 vagy 10 volt, a bemeneti hőmérséklet 120, 160 vagy 200 Celsius-fok, a légáramlási sebesség pedig 13, 18 vagy 23 köbméter per óra volt, utóbbi esetén 655,5 wattnyi hőt termeltek 1,35 COP mellett.

A kifejlesztett TEHP-rendszer integrálása egy elektromos ellenálláson alapuló hőenergiatároló rendszer töltési folyamatába 15, illetve 30 százalékkal növeli az energiaátalakítás hatékonyságát 120 és 200 Celsius-fok közötti energiatárolási hőmérséklet esetén. A javasolt rendszerkonfiguráció 135 Celsius-fokon 112,6 százalékos hatásfokot érhet el. A csapat következő céljai között szerepel, hogy a rendszer viselkedését változó hidegforrás-hőmérséklet esetén is teszteljék.

Advertisement
Tovább olvasom

Ezeket olvassák

© 2022 zoldtrend.hu | Minden jog fenntartva!