Kapcsolatfelvétel

Zöld Energia

Napelem: Ha ma megrendelem, mikortól lesz 0 Ft-os a villanyszámlám?

Létrehozva:

|

 

 A decentralizált energiatermelés egyik kulcsfontosságú eleme a háztartási méretű kiserőművek (HMKE-k) termelése.

A HMKE jogszabályi megfogalmazása a 2008-ban hatályba lépett villamos energiáról (VET) szóló 2007. évi LXXXVI törvény, valamint az annak végrehajtásáról szóló rendeletben található, melyek kimondják, hogy HMKE-nek minősül az a villamosenergia-termelő berendezés, mely: “olyan, a kisfeszültségű hálózatra csatlakozó kiserőmű, melynek csatlakozási teljesítménye egy csatlakozási ponton nem haladja meg az 50 kVA-t” (ez a legfeljebb 50 kW beépített teljesítőképességű kiserőműveket jelenti jó közelítéssel). A HMKE, mint termelő létesítmény célja a „háztáji villamosenergia-termelés”, azaz hogy egy háztartás villamosenergia-fogyasztását helyben állítsa elő, így az egyes csatlakozási pontokon a hálózati veszteség csökkenhet. A VET technológiai megkötést nem tesz, így naperőmű, szélerőmű vagy bármely egyéb technológiával működő kiserőmű is tartozhat ebbe a kategóriába. Az elosztói hálózatok által kialakított szabályozás alapján HMKE létesítése és elosztóhálózathoz való csatlakoztatása engedélyköteles – amelynek kiállítására az igénybejelentés és csatlakozási dokumentáció benyújtása után az adott területen működő elosztói engedélyes (E.ON, ELMŰ, stb.) jogosult -, ha a kiserőmű hálózatra csatlakozik és azzal párhuzamos üzemben működik vagy képes működni. Amennyiben nem csatlakozik, azaz szigetüzemben működik, akkor a létesítést csak bejelenteni szükséges szintén az elosztói engedélyesnek. A HMKE-k létesítése és hálózathoz való csatlakoztatása műszaki feltételekhez kötött, melyek közül az egyik legfontosabb, hogy az adott felhasználási helyen a szükséges egy hálózathasználati, és -csatlakozási szerződés, vagy korábban közüzemi szerződés, és az abban foglalt rendelkezésre álló teljesítmény “igazolható módon elérje, vagy meghaladja a telepíteni szándékozott HMKE névleges betáplálási teljesítményét”. Ha ez a feltétel nem teljesül, teljesítménybővítésre van szükség, mely a villamos energia rendszerhasználati díjak, csatlakozási díjak és külön díjak alkalmazási szabályairól szóló rendelet alapján történik.

 

A HMKE-k telepítését szabályozó keretrendszer a termelő berendezések hálózatra kifejtett hatásait, visszahatásait is figyelembe veszi, így meghatározza, hogy csak az egyes villamossági termékek biztonsági követelményeiről és az azoknak való megfelelőség értékeléséről szóló rendeletben írtaknak megfelelő berendezést lehet csatlakoztatni a közhálózatra, valamint a csatlakozás módját is megszabja: kisfeszültségű hálózatra egyfázisú termelő berendezés általában csak 2,5 kVA-ig csatlakoztatható, 5 kVA egységteljesítmény felett pedig kizárólag háromfázisú csatlakoztatás megengedett. Abban az esetben, ha “a felhasználó egyfázisú ellátással rendelkezik, akkor több egyfázisú termelőegység is csatlakoztatható, de ezek összes névleges teljesítménye nem haladhatja meg az 5 kVA-t. Többfázisú csatlakoztatás esetén törekedni kell a termelő berendezések szimmetrikus elosztására, a fázisok közötti aszimmetria pedig maximum 5 kVA lehet.” A hálózatra és a csatlakozásra vonatkozó feltételek mellett a termelő berendezéssel kapcsolatos műszaki előírások is megtalálhatók a szabályzatban. Így az előírás szerint a villamos energia visszatáplálására alkalmas berendezést el kell látni olyan védelemmel, amely a kisfeszültségű hálózat irányából a hálózati feszültség kimaradása esetén az automatikus és galvanikus leválasztást 200 ms-on belül képes automatikusan biztosítani.

A termelő egységet továbbá rövidzárlati, túlterhelési, földzárlati és érintésvédelmen túlfeszültség és frekvencia csökkenési és emelkedési védelemmel, valamint túlfeszültség és szigetüzem elleni védelemmel is el kell látni. A hálózati visszahatások vonatkozásában az MSZ-EN 50160 előírásai az irányadóak, melyek szerint a hálózatba visszatáplált áram lehetséges maximális felharmonikus tartalma: THDi<5%. A berendezésnek ezen kívül a felhasználói hálózatra fixen beépített eszközökön keresztül kell csatlakoznia a fogyasztói főelosztóba.

Kétféle közcélú hálózatra kapcsolt HMKE termelőrendszer létesíthető, a szigetüzemre nem alkalmas, hálózatra tápláló, illetve a szigetüzemre alkalmas termelő berendezés. Bár a nem szigetüzemre szánt létesítmény nem képes üzemelni, ha a közcélú hálózaton valamilyen okból kifolyólag megszakad az energiaszolgáltatás, egyszerűsége és takarékossága miatt mégis ez az elterjedtebb kialakítás. Ezek a közvetlen váltakozó áramú generátoros rendszerek inverteres és a teljesítményszabályozásra alkalmatlanok.

A szigetüzemben is működni képes rendszerek az addicionális berendezések (akkumulátortelep, töltésvezérlő, speciális inverter, szabályozás) miatt jóval drágábbak, telepítésük hálózati kapcsolattal rendelkező felhasználók esetén csak gyakori hálózati zavarok, illetve speciális (szünetmentes) táplálási igény esetén megtérülő. Ilyen típusú létesítmény lehet inverteres rendszer, amely a közcélú hálózaton bekövetkező zavar, áramkimaradás esetén a hálózatról lekapcsolódik, és az akkumulátortelepből – annak kapacitásáig – biztosítja a villamosenergiát, de csak a felhasználó villamos berendezéseinek működéséhez feltétlen szükséges mennyiséget. Az áramkimaradás megszűnése után visszacsatlakozik a hálózatra. Léteznek továbbá közvetlen váltakozó áramú generátoros rendszerek is, melyek alkalmasak teljesítményszabályozásra, a bekövetkező áramkimaradás esetén a hálózatról szintén lekapcsolódnak, és a generátor kapacitásáig biztosítják a szükséges energiát. Az áramkimaradás megszűnését követően ezen berendezések is visszaállnak hálózati táplálással történő működésre. A HMKE-k energiatermelése során alkalmazott technológiák közül a legelterjedtebb a napenergia hasznosítása fotovoltaikus napelemek segítségével, de kereskedelmi forgalomban kapható olyan szélkerék is, melyek egy családi ház igényeit az év jelentős részében fedezni tudják. Ez pillanatnyilag hazánkban főleg kis közösségi felhasználásban képzelhető el, azonban ezen technológiánál szigetüzem nem igen valósulhat meg. A jelenlegi tapasztalatok azt mutatják, hogy ezen berendezések a beruházási, és a további járulékos költségek miatt támogatások nélkül nem térülnek meg és nem tarthatók fenn, ezért is léteznek a legtöbb országban támogatási rendszerek a megújuló energiaforrással működő technológiák terjedésének elősegítése érdekében.

Kulcsár “Háztartási méretű kiserőművek villamosenergia-ellátásban betöltött szerepe a magyarországi településállományban” című tanulmányában a Magyarországon, 2015. december 31-ig létesített HMKE-állományt vizsgálta négy szempont szerint: mely településeken található a legtöbb HMKE (abszolút értékben és fogyasztóarányosan), hol található a legnagyobb beépített összes kapacitás, illetve az adott települések energia-önellátási szintje mekkora, azaz az így termelt villamosenergia az igények mekkora hányadát képes fedezni. A tanulmány először is megállapítja, hogy a HMKE kategória bevezetése, és az erre vonatkozó törvény hatályba lépése óta az ilyen típusú erőművekből származó összes teljesítőképesség ugrásszerűen megnövekedett: a 2008-ban még csak 0,51 MW kapacitás 2015 végére a 128 MW-ot is meghaladta. Ezen kapacitás kiemelkedően nagy részét – több mint 99%-át – a napelemes kiserőművek adják, ez a MEKH adatai alapján 2015-ben összesen 15 136 db HMKE-t jelentett, így mindössze 90 db, 1,29 MW beépített teljesítményű HMKE működött egyéb technológia szerint (ezek 68%-a szélerőmű, közel 16%-a pedig földgázüzemű erőmű). A HMKE-k kapacitás-alakulása 2008-tól az alábbi táblázatban található. A tanulmány során felhasznált MEKH-adatok alapján az is észrevehető, hogy a legtöbb HMKE-méretű naperőmű 5 kW alatti, a lakossági szegmensre jellemző kategóriába tartozik, a legnagyobb teljesítőképesség pedig az intézményi és céges szegmensre jellemző 10-50 kW-os csoportban található.

A HMKE naperőművek ilyen mértékű növekedésének több oka is van, többek között a beruházási költség csökkenése, a kedvező szaldó elszámolás és a pályázati forrásból igénybe vehető beruházási támogatások. A tanulmány szerint 2015-ben hazánkban, a településeknek szolgáltatott villamosenergia mennyisége 35 760 GWh volt, ebből 34 056 GWh az 1 759 HMKE-vel rendelkező települések, melyből 131,122 GWh, azaz csupán 0,38% a HMKE-k által megtermelhető rész. Fontos megjegyeznünk, hogy triviális okokból kifolyólag a HMKE-k valós teljesítményét nem, csak a hálózatba táplált többletteljesítményt tudjuk mérni, így ezek becsült, beépített teljesítményből számított adatok. A legtöbb HMKE-vel rendelkező település között főként megyeszékhelyeket, nagy-, közép- és kisvárosokat találunk – a legtöbb HMKE és a legnagyobb beépített teljesítmény is Budapesten található, lakosságra vetítve pedig Siófok, Szekszárd, Hajdúböszörmény és Kiskunhalas szerepel a legelőkelőbb helyeken. Szintén 2015-ben a néhány száz fős lélekszámú településeket tekintve megfigyelhető, hogy a HMKE-k által termelt villamosenergia az éves igények akár 45%-át is képes volt fedezni. A 10 000-100 000 fős lakosú településeken ez az arány meghaladta a 2%-ot, a 100 000 fő feletti városokban viszont 1% alatti volt ez az érték. Ezen adatok azt mutatják, hogy a közeljövőben egyes településeken megvalósulhat az önellátás, megfelelő támogatások, ösztönzők mellett növekedhet a decentralizált energiatermelés aránya, ezzel növelve az energiaellátás biztonságát és közelebb kerülve a környezetvédelmi célok eléréséhez.

Forrás: energiam.blog.hu
Bittera Luca

 

0 Ft-os villanyszámla, egyszerűen. Kérjen itt ajánlatot napelemes rendszerre. 15 percen belül részletes, személyre szabott árajánlatot kap. (x)

Zöld Energia

Tengervízből készít ihatót napelemek segítségével egy új fejlesztés

Létrehozva:

|

Szerző:

Az MIT csapata olyan sótalanító eszközt hozott létre, amely áramhálózat nélkül is képes működni.

A tiszta ivóvíz a világ számos pontján nehezen hozzáférhető, tengerből viszont van bőven. Amerikai szakértők most olyan sótalanító eszközt hoztak létre, amely szűrők vagy magas nyomású szivattyúk nélkül képes tiszta vizet létrehozni – számol be a PV Magazine. A berendezés energiaigényét napenergia biztosítja, és literenként csupán 20 wattra van szüksége. A hordozható rendszert a Massachusettsi Műszaki Intézet (MIT) csapata építette. Az eszköz segítségével nehezen megközelíthető helyeken, az elektromos hálózatoktól távol is elő lehet állítani ivóvizet a tengerből. A gép egy vezérlőből, szivattyúkból és egy akkumulátorból áll, melyeket együtt egy 9,25 kilogrammos, 42-szer 33,5-szer 19 centiméteres egységbe helyeznek. Az akár okostelefonnal is irányítható szerkezet óránként 0,33 liter vizet tud termelni.

A kutatók mesterséges intelligenciával javították fel a berendezés ionkoncentráció-polarizációs (ICP) technikáját. A módszer lényege, hogy elektromos mező keletkezik a vízcsatorna alatt, illetve felett található membránokban. A membránok taszítják az előttük elhaladó pozitív vagy negatív töltésű részecskéket, így a sómolekulákat, baktériumokat és vírusokat. A részecskék aztán egy másik vízáramba kerülnek át, ahonnan végül kiürítik őket. A rendszer eltávolítja az oldott és lebegő szilárd anyagokat, az alacsony nyomású szivattyúknak köszönhetően pedig az energiaigény sem jelentős. Az eszközben elektrodialízist is alkalmaznak – ez egy eljárás az ionok sóoldatokban való szétválasztására, valamint a fennmaradó sóionok kivonására. A fejlesztők szerint ideális esetben a víz előbb két ICP eljáráson, majd egy elektrodialízises tisztításon esik át, hogy minél jobb minőségű legyen.

A csapat egy bostoni parton tesztelte a 20 wattos szerkezetét különböző sótartalmú és zavarosságú vizekkel. Az eszköz jól szerepelt a vizsgálatokon. Érdemes kiemelni, hogy egyelőre csak egy prototípust hoztak létre, és további finomításokra lesz szükség, mire a technológiát széles körben is alkalmazhatják.

Tovább olvasom

Zöld Energia

Magyarok tervezték az épületet, amely több energiát termel mint amennyire szüksége van

Létrehozva:

|

Szerző:

Egyedi pluszenergiás házzal szerepel a Solar Decathlon Europe nemzetközi építőipari innovációs versenyen a Pécsi Tudományegyetem Műszaki és Informatikai Karának (PTE MIK) csapata, amely egyedüliként képviseli Magyarországot a júniusi wuppertali eseményen.

A PTE MIK hallgatói által tervezett és előépített ház pénteki pécsi bokrétaünnepségén György László, az Innovációs és Technológiai Minisztérium (ITM) gazdaságstratégiáért és szabályozásért felelős államtitkára felhívta a figyelmet arra, hogy a projektben ötvöződik minden, amit Magyarországon alapkutatásnak, alkalmazott kutatásnak és innovációnak tekintünk. Az esemény sajtóanyaga szerint az először húsz esztendeje megrendezett Solar Decathlon nemzetközi építőipari innovációs verseny célja, hogy egyetemi kutatói csoportok működjenek együtt ipari partnerekkel, támogatókkal energiahatékony épületek, mintaotthonok tervezésére, megépítésére.

A versenyen mérnökhallgatók kreativitására és innovációs képességére építve olyan energiatudatos épületet kell tervezniük, amelynek létrehozásában egyetemi kutatói csoportok, valamint ipari szereplők is együttműködnek, és amelyek a jövő generációi számára mintaotthonként szolgálnak. A pécsiek megújuló energiahordozókra alapozott és a fenntarthatóságot szem előtt tartva megtervezett, különleges megoldásokat felvonultató, többfunkciós lakóházának tervezőcsapata 17 másikkal mérkőzik meg a németországi Wuppertalban június elején a Solar Decathlon Europe-on. Az eseményen a Pécsen előépített, majd szétszerelt, darabokban kamionokkal elszállított házat két hét alatt kell ismét megépíteniük.

A pécsiek épületüket a városban maradó, egyetemet végzett fiatalok számára tervezték, annak északi homlokzatán a káros anyagokat megkötő zöldfelület, a déli oldalon pedig egy – a napenergiát, a passzív energiát hasznosító – naptér helyezkedik majd el. A ház ökológiai szempontból plusz energiás lesz, azaz emissziója negatív. A csapat célul tűzte ki, hogy ez ne csak az épület üzemeltetésére legyen érvényes, hanem az egész életciklusra, amibe az építkezés is beletartozik. A versenyépületet az előzsűri beválasztotta azon nyolc projekt közé, amelyek a Solar Decathlon versenyt követően még három évig aktív részesei lesznek a “Wuppertal-i Fenntarhatósági Mintapark” bemutató tereinek, a “Solar Living Lab-nek” – jelezték a sajtóanyagban.

 

3 millió forint támogatás napelemre. Kérjen ingyenes ajánlatot! (x)

Tovább olvasom

Zöld Energia

Így született meg a magyar napelemes tetőcserép

Létrehozva:

|

Szerző:

A magyar fejlesztésű napelemes tetőcserépre sokat kellett várni, de az elmúlt két évben sikerült komoly eredményeket elérnie. A tetőre telepített napelemekkel egy háztartás rengeteg pénzt spórolhat, sokaknak azonban esztétikai kifogásaik vannak az ilyen beruházásokkal kapcsolatban. Számukra jelenthetnek megoldást a költségesebb, de jóval szebb napelemes cserepek, amelyeket a hagyományos cserepekhez hasonlóan lehet beilleszteni a tetőszerkezetbe. A technológia a 2000-es években jelent meg, 2012 januárjában pedig már egy magyar fejlesztésű, forradalmi terméktől volt hangos a hazai sajtó. Tóth Miklós találmányának szabadalmát 180 országban védette le, és arra számított, hogy nem csupán Magyarországon fog beindulni a gyártás.

„A gyártás itthon fog történni, de jelenleg is tárgyalásban vagyunk európai és tengerentúli gyártóbázis beindításáról is, még ebben az évben” – tette hozzá. Tóth Miklós az interjúban a hazai befektetőkkel kapcsolatos csalódásairól is beszélt. A projekt azonban 2014-ben sem robbant be, 2016-ban ráadásul a Tesla bemutatta saját fejlesztésű napelemes tetőcserepét. A termék hamar nagy népszerűségre tett szert, miközben a magyar találmányról megint nem nagyon lehetett hallani, és végül feledésbe is merült. A Teslát egyébként többen is megvádolták lopással, utóbb pedig más, hasonló termékek is megjelentek a piacon.

Tóth Miklós

A Terrán Generonnak sikerült

A fejlesztés nem csupán Amerikában lendült fel, a százéves múltú, magyarországi Terrán Tetőcserép Gyártó Kft. is elkezdte létrehozni saját napelemes tetőcserepét. A 2017 szeptemberében bejelentett projektben a Budapesti Műszaki és Gazdaságtudományi Egyetem (BME) is részt vett, az első darabok pedig némi csúszással, 2019-ben kerültek forgalomba. A Terrán Generont egy 2019. áprilisi kiállításon mutatták be először. Márciusban a vállalat ügyvezető igazgatója azt mondta, egy normál családi ház tetőfelülete 200-250 négyzetméter, ennek 15-20 százalékát, azaz mintegy 20-40 négyzetmétert kell lefedni a napelemes cserepekkel ahhoz, hogy a rendszer ellássa a háztartás áramfogyasztását. A vállalat honlapján ekkor azt írta, egy Magyarországon átlagosnak számító 6 kWp-os napelemes rendszer Terrán Generonnal, teljes körű szolár kivitelezéssel, inverterrel és szolgáltatói ügyintézéssel nagyjából 3,9 millió forintba kerül.

Terrán Generon

A tapasztalatok alapján ugyanakkor általában ennél kisebb teljesítményű rendszer is elegendő. Egy átlagos magyar háztartás éves energiaigényét optimális tájolás esetén egy 2 kW csúcsteljesítményű rendszer is kielégítheti, ennek kiépítését mindennel együtt megközelítőleg bruttó 2 millió forintra becsülik. A Terrán szerint a beruházás már közép távon megtérül, a napelemes cserepek megjelenése pedig szinte teljesen megegyezik a hagyományos tetőcserepekével. Fontos kiemelni, hogy a magyar terméket csak Terrán Zenit és Terrán Rundo, illetve ilyen típusúvá átalakított tetőfedésbe építhető be. 2021 márciusára a Generont már több mint száz épületre telepítették, ekkor derült ki, hogy a cég külön gyártósort tervez beindítani Pécsett. Idén márciusban még májusra várták a próbagyártás megkezdését, 2021-ben pedig összesen mintegy 250 otthon és középület tetőébe akarták beépíteni a napelemes rendszert. A Terrán esetében egyébként, sok más hazai vállalathoz hasonlóan, fellendülést hozott az otthonfelújítási program, a támogatás révén sokan érdeklődtek a Generon iránt.

A pécsi gyár végül csak tavaly szeptember második felében nyitott meg. Gódi Attila, a Terrán ügyvezető igazgatója az avatóünnepségen kiemelte: az új beruházással már három magyarországi és két határon túli gyárban állítják elő a cég termékeit, a napelemes tetőcserepek pedig a cégcsoport hatodik automata gyártósorán készülnek. Ekkorra a terméket már több mint 200 épületre telepítették.

Tovább olvasom

Zöldtrend a Facebookon

Címkék

Ezeket olvassák