Kapcsolatfelvétel

Zöld Energia

Napelem: Ha ma megrendelem, mikortól lesz 0 Ft-os a villanyszámlám?

Létrehozva:

|

 

 A decentralizált energiatermelés egyik kulcsfontosságú eleme a háztartási méretű kiserőművek (HMKE-k) termelése.

A HMKE jogszabályi megfogalmazása a 2008-ban hatályba lépett villamos energiáról (VET) szóló 2007. évi LXXXVI törvény, valamint az annak végrehajtásáról szóló rendeletben található, melyek kimondják, hogy HMKE-nek minősül az a villamosenergia-termelő berendezés, mely: “olyan, a kisfeszültségű hálózatra csatlakozó kiserőmű, melynek csatlakozási teljesítménye egy csatlakozási ponton nem haladja meg az 50 kVA-t” (ez a legfeljebb 50 kW beépített teljesítőképességű kiserőműveket jelenti jó közelítéssel). A HMKE, mint termelő létesítmény célja a „háztáji villamosenergia-termelés”, azaz hogy egy háztartás villamosenergia-fogyasztását helyben állítsa elő, így az egyes csatlakozási pontokon a hálózati veszteség csökkenhet. A VET technológiai megkötést nem tesz, így naperőmű, szélerőmű vagy bármely egyéb technológiával működő kiserőmű is tartozhat ebbe a kategóriába. Az elosztói hálózatok által kialakított szabályozás alapján HMKE létesítése és elosztóhálózathoz való csatlakoztatása engedélyköteles – amelynek kiállítására az igénybejelentés és csatlakozási dokumentáció benyújtása után az adott területen működő elosztói engedélyes (E.ON, ELMŰ, stb.) jogosult -, ha a kiserőmű hálózatra csatlakozik és azzal párhuzamos üzemben működik vagy képes működni. Amennyiben nem csatlakozik, azaz szigetüzemben működik, akkor a létesítést csak bejelenteni szükséges szintén az elosztói engedélyesnek. A HMKE-k létesítése és hálózathoz való csatlakoztatása műszaki feltételekhez kötött, melyek közül az egyik legfontosabb, hogy az adott felhasználási helyen a szükséges egy hálózathasználati, és -csatlakozási szerződés, vagy korábban közüzemi szerződés, és az abban foglalt rendelkezésre álló teljesítmény “igazolható módon elérje, vagy meghaladja a telepíteni szándékozott HMKE névleges betáplálási teljesítményét”. Ha ez a feltétel nem teljesül, teljesítménybővítésre van szükség, mely a villamos energia rendszerhasználati díjak, csatlakozási díjak és külön díjak alkalmazási szabályairól szóló rendelet alapján történik.

 

A HMKE-k telepítését szabályozó keretrendszer a termelő berendezések hálózatra kifejtett hatásait, visszahatásait is figyelembe veszi, így meghatározza, hogy csak az egyes villamossági termékek biztonsági követelményeiről és az azoknak való megfelelőség értékeléséről szóló rendeletben írtaknak megfelelő berendezést lehet csatlakoztatni a közhálózatra, valamint a csatlakozás módját is megszabja: kisfeszültségű hálózatra egyfázisú termelő berendezés általában csak 2,5 kVA-ig csatlakoztatható, 5 kVA egységteljesítmény felett pedig kizárólag háromfázisú csatlakoztatás megengedett. Abban az esetben, ha “a felhasználó egyfázisú ellátással rendelkezik, akkor több egyfázisú termelőegység is csatlakoztatható, de ezek összes névleges teljesítménye nem haladhatja meg az 5 kVA-t. Többfázisú csatlakoztatás esetén törekedni kell a termelő berendezések szimmetrikus elosztására, a fázisok közötti aszimmetria pedig maximum 5 kVA lehet.” A hálózatra és a csatlakozásra vonatkozó feltételek mellett a termelő berendezéssel kapcsolatos műszaki előírások is megtalálhatók a szabályzatban. Így az előírás szerint a villamos energia visszatáplálására alkalmas berendezést el kell látni olyan védelemmel, amely a kisfeszültségű hálózat irányából a hálózati feszültség kimaradása esetén az automatikus és galvanikus leválasztást 200 ms-on belül képes automatikusan biztosítani.

A termelő egységet továbbá rövidzárlati, túlterhelési, földzárlati és érintésvédelmen túlfeszültség és frekvencia csökkenési és emelkedési védelemmel, valamint túlfeszültség és szigetüzem elleni védelemmel is el kell látni. A hálózati visszahatások vonatkozásában az MSZ-EN 50160 előírásai az irányadóak, melyek szerint a hálózatba visszatáplált áram lehetséges maximális felharmonikus tartalma: THDi<5%. A berendezésnek ezen kívül a felhasználói hálózatra fixen beépített eszközökön keresztül kell csatlakoznia a fogyasztói főelosztóba.

Kétféle közcélú hálózatra kapcsolt HMKE termelőrendszer létesíthető, a szigetüzemre nem alkalmas, hálózatra tápláló, illetve a szigetüzemre alkalmas termelő berendezés. Bár a nem szigetüzemre szánt létesítmény nem képes üzemelni, ha a közcélú hálózaton valamilyen okból kifolyólag megszakad az energiaszolgáltatás, egyszerűsége és takarékossága miatt mégis ez az elterjedtebb kialakítás. Ezek a közvetlen váltakozó áramú generátoros rendszerek inverteres és a teljesítményszabályozásra alkalmatlanok.

A szigetüzemben is működni képes rendszerek az addicionális berendezések (akkumulátortelep, töltésvezérlő, speciális inverter, szabályozás) miatt jóval drágábbak, telepítésük hálózati kapcsolattal rendelkező felhasználók esetén csak gyakori hálózati zavarok, illetve speciális (szünetmentes) táplálási igény esetén megtérülő. Ilyen típusú létesítmény lehet inverteres rendszer, amely a közcélú hálózaton bekövetkező zavar, áramkimaradás esetén a hálózatról lekapcsolódik, és az akkumulátortelepből – annak kapacitásáig – biztosítja a villamosenergiát, de csak a felhasználó villamos berendezéseinek működéséhez feltétlen szükséges mennyiséget. Az áramkimaradás megszűnése után visszacsatlakozik a hálózatra. Léteznek továbbá közvetlen váltakozó áramú generátoros rendszerek is, melyek alkalmasak teljesítményszabályozásra, a bekövetkező áramkimaradás esetén a hálózatról szintén lekapcsolódnak, és a generátor kapacitásáig biztosítják a szükséges energiát. Az áramkimaradás megszűnését követően ezen berendezések is visszaállnak hálózati táplálással történő működésre. A HMKE-k energiatermelése során alkalmazott technológiák közül a legelterjedtebb a napenergia hasznosítása fotovoltaikus napelemek segítségével, de kereskedelmi forgalomban kapható olyan szélkerék is, melyek egy családi ház igényeit az év jelentős részében fedezni tudják. Ez pillanatnyilag hazánkban főleg kis közösségi felhasználásban képzelhető el, azonban ezen technológiánál szigetüzem nem igen valósulhat meg. A jelenlegi tapasztalatok azt mutatják, hogy ezen berendezések a beruházási, és a további járulékos költségek miatt támogatások nélkül nem térülnek meg és nem tarthatók fenn, ezért is léteznek a legtöbb országban támogatási rendszerek a megújuló energiaforrással működő technológiák terjedésének elősegítése érdekében.

Kulcsár “Háztartási méretű kiserőművek villamosenergia-ellátásban betöltött szerepe a magyarországi településállományban” című tanulmányában a Magyarországon, 2015. december 31-ig létesített HMKE-állományt vizsgálta négy szempont szerint: mely településeken található a legtöbb HMKE (abszolút értékben és fogyasztóarányosan), hol található a legnagyobb beépített összes kapacitás, illetve az adott települések energia-önellátási szintje mekkora, azaz az így termelt villamosenergia az igények mekkora hányadát képes fedezni. A tanulmány először is megállapítja, hogy a HMKE kategória bevezetése, és az erre vonatkozó törvény hatályba lépése óta az ilyen típusú erőművekből származó összes teljesítőképesség ugrásszerűen megnövekedett: a 2008-ban még csak 0,51 MW kapacitás 2015 végére a 128 MW-ot is meghaladta. Ezen kapacitás kiemelkedően nagy részét – több mint 99%-át – a napelemes kiserőművek adják, ez a MEKH adatai alapján 2015-ben összesen 15 136 db HMKE-t jelentett, így mindössze 90 db, 1,29 MW beépített teljesítményű HMKE működött egyéb technológia szerint (ezek 68%-a szélerőmű, közel 16%-a pedig földgázüzemű erőmű). A HMKE-k kapacitás-alakulása 2008-tól az alábbi táblázatban található. A tanulmány során felhasznált MEKH-adatok alapján az is észrevehető, hogy a legtöbb HMKE-méretű naperőmű 5 kW alatti, a lakossági szegmensre jellemző kategóriába tartozik, a legnagyobb teljesítőképesség pedig az intézményi és céges szegmensre jellemző 10-50 kW-os csoportban található.

A HMKE naperőművek ilyen mértékű növekedésének több oka is van, többek között a beruházási költség csökkenése, a kedvező szaldó elszámolás és a pályázati forrásból igénybe vehető beruházási támogatások. A tanulmány szerint 2015-ben hazánkban, a településeknek szolgáltatott villamosenergia mennyisége 35 760 GWh volt, ebből 34 056 GWh az 1 759 HMKE-vel rendelkező települések, melyből 131,122 GWh, azaz csupán 0,38% a HMKE-k által megtermelhető rész. Fontos megjegyeznünk, hogy triviális okokból kifolyólag a HMKE-k valós teljesítményét nem, csak a hálózatba táplált többletteljesítményt tudjuk mérni, így ezek becsült, beépített teljesítményből számított adatok. A legtöbb HMKE-vel rendelkező település között főként megyeszékhelyeket, nagy-, közép- és kisvárosokat találunk – a legtöbb HMKE és a legnagyobb beépített teljesítmény is Budapesten található, lakosságra vetítve pedig Siófok, Szekszárd, Hajdúböszörmény és Kiskunhalas szerepel a legelőkelőbb helyeken. Szintén 2015-ben a néhány száz fős lélekszámú településeket tekintve megfigyelhető, hogy a HMKE-k által termelt villamosenergia az éves igények akár 45%-át is képes volt fedezni. A 10 000-100 000 fős lakosú településeken ez az arány meghaladta a 2%-ot, a 100 000 fő feletti városokban viszont 1% alatti volt ez az érték. Ezen adatok azt mutatják, hogy a közeljövőben egyes településeken megvalósulhat az önellátás, megfelelő támogatások, ösztönzők mellett növekedhet a decentralizált energiatermelés aránya, ezzel növelve az energiaellátás biztonságát és közelebb kerülve a környezetvédelmi célok eléréséhez.

Forrás: energiam.blog.hu
Bittera Luca

 

0 Ft-os villanyszámla, egyszerűen. Kérjen itt ajánlatot napelemes rendszerre. 15 percen belül részletes, személyre szabott árajánlatot kap. (x)

Zöld Energia

Milliós megtakarítás és energiahatékonyság a Junior Energiagazda képzéssel

Létrehozva:

|

Szerző:

Az energiahatékony működés a vállalatok számára rendkívül fontos, hiszen a környezetvédelem mellett nem elhanyagolható szempont, hogy ezáltal jelentős energia- és költségmegtakarítás érhető el.

A fiatal munkatársak szemléletformálása és érzékenyítése a témában rendkívül fontos feladat napjainkban. Erre kínál hatékony megoldást a Young Energy Europe 2.0 (YEE 2.0) projekt Junior Energiagazda képzése a Német-Magyar Tudásközpont (DUWZ) szervezésében. Ez a komplex energetikai workshopsorozat fel nem tárt energiamegtakarítási lehetőségekre hívja fel a munkavállalók figyelmét. A képzés során a résztvevők vállalatuknál optimalizálási lehetőségeket keresnek, amelyek az energiafogyasztás, valamint az energiaköltségek csökkentését szolgálják. A magyarországi Junior Energiagazda képzéseken eddig összesen 34 vállalattól 102 munkatárs vett részt. A képzés magában foglalja a vállalati energiahatékonyság szempontjából legfontosabb, legaktuálisabb témákat. A résztvevők ingyenesen kölcsönözhető mérőeszközök segítségével gyűjtenek fogyasztási adatokat és energiahatékonysági projekttervet készítenek, amelyhez segítséget kapnak a választott szakoktatótól.

A Junior Energiagazda képzés záróeseményén a résztvevő csapatok bemutatják az elkészített energiahatékonysági projekttervüket, mely a megvalósítást követően jelentős megtakarítást eredményez a vállalat számára az alábbi videókban látható módon:

– a SCHOTT Hungary Kft. energiahatékonysági projektje:

– a gyöngyösi Városgondozási Zrt. energiahatékonysági projektje:

A 2020-as magyarországi képzésen a legjobb projektnek járó díjat a DENSO Manufacturing Hungary Ltd. nyerte sűrített levegős rendszerük optimalizálásával, amelynek keretében fúvókákat szereltek fel, pneumatikus membrán pumpákat váltottak ki saját fejlesztésű elektromos pumpával, továbbá megszüntették a szivárgásokat a hálózaton és a termelő gépeken egyaránt. A fenti intézkedésekkel éves szinten 1781,3 MWh villamos energiát és 53.440.320 Ft-ot takaríthat meg a vállalat, valamint 407,92 tonnával csökkentheti széndioxid-kibocsátását. A projekt megtérülési ideje rendkívül rövid, mindössze 0,27 év.

Egy másik sikeres projekt az FGSZ Földgázszállító Zrt. Veszprém I. gázátadó állomás fűtésrendszerének korszerűsítésére irányult. A résztvevők megállapították, hogy a fűtéscsövek és hőcserélők szigetelésével jelentősen csökkenthető a túlfűtés miatti veszteség, valamint a szivattyúk villamosenergia-felhasználása. Elérhető költségmegtakarítás: 2.000.000 Ft, megtérülési idő 0,75 év. Emellett korszerű vezérlés, frekvenciaváltós szivattyú, kondenzációs kazánok beépítésével további jelentős megtakarítás realizálható.

A Junior Energiagazda képzés különlegessége annak jövőbeli hatásaiban rejlik. A résztvevők nem csupán egy energiahatékonysági projektet állítanak össze, amelynek segítségével jelentős költségcsökkentést érhetnek el a vállalat számára, de mindezeken felül rengeteg tapasztalatot gyűjtenek, és felelősségteljes munkatárssá válnak. Olyan energetikai szemléletet sajátíthatnak el, amellyel a vállalatot energiahatékonyabbá, környezettudatosabbá tehetik.

A YEE 2.0 projekt Junior Energiagazda képzése a németországi Környezet-, Természetvédelmi és Nukleáris Biztonsági Minisztérium támogatási kezdeményezése, az „Európai Klímavédelemi Iniciatíva” (EUKI) által támogatott projekt. A központi koordinációt a DIHK Service GmbH biztosítja. A projekt összefoglaló videója megtekinthető itt.

Szeptember 8-án indulő képzésről itt találhat bővebb információt.

Tovább olvasom

Zöld Energia

Az új Ethereum 99 százalékkal kevesebb energiafelhasználással jár, mint elődje

Létrehozva:

|

Szerző:

A kriptovalutákkal kapcsolatban jelenleg az egyik legnagyobb beszédtéma az energiahatékonyság, ami nem is csoda: a legismertebb Bitcoin éves villamosenergia-fogyasztása több, mint amennyit például Argentína, az Egyesült Arab Emírségek vagy Hollandia fogyaszt, írta az alternativenergia.hu.

Erre megoldást hozhat egy másik valuta, az Ethereum 2.0, ami 99,95 százalékkal kevesebb energiafelhasználással járhat, mint az elődje. Az Ethereum jelenleg a legnagyobb altcoin, vagyis a Bitcoinhoz hasonló kriptovaluta. Szakértők szerint hamarosan népszerűbb lehet, mint a piacon először megjelenő társa, mivel már most több szempontból jobb: az Ethereum ugyanis egy olyan számítástechnikai platform is, ahol a fejlesztők új alkalmazásokat hozhatnak létre, ezen kívül támogatja az intelligens szerződéseket, és megvan benne a lehetőség, hogy megbízható információk nagy piacává váljon decentralizált működése jóvoltából. Ez persze csak a jéghegy csúcsa, elemzők millió szempontból hasonlították már össze a Bitcoint az Ethereummal, és leginkább a jövő zenéje lesz, hogy melyik milyen téren lesz népszerűbb – az viszont biztos, hogy utóbbi energiahatékonysági területen nagyot lép előre azzal, ha megjelenik és elterjed az Ethereum 2.0. A kriptovaluták ugyanis jelenleg nagyon alacsony energiahatékonysággal működnek, a Bitcoin éves villamosenergia-fogyasztása például több, mint amennyit Argentína, az Egyesült Arab Emírségek, vagy éppen Hollandia elhasznál.

A kriptovaluta előállítása energiaigényes folyamat, nagy teljesítményű számítógépek szükségesek hozzá. 2021-es adatok szerint a Bitcoin működése éves szinten 121,36 terrawattórát (TWh) tesz ki, amit érdekes összevetni a magyar lakossági villamosenergia-felhasználással, amely ugyanekkora időintervallum mellett 11,7 terawattóra.
Kérdés, hogy hol lehet ezen faragni – az Ethereum, úgy tűnik, megtalálta a megoldást. A valuta és platform jelenleg a Proof of Work (PoW) protokoll alapján működik, ugyanúgy, mint a Bitcoin: ez tulajdonképpen egy algoritmust takar, amelynek segítségével a decentralizált rendszer felügyelői biztosíthatják, hogy a konszenzus megszületik olyan nagyon fontos témákban, mint a számlaegyenlegek, vagy a tranzakciók sorrendje. Ez gyakorlatilag lefekteti a szabályokat, amelyek alapján a bányászok dolgoznak.

Az algoritmus biztosítja, hogy mindig annyi Ethereum mozogjon a tranzakciókban, amennyi ténylegesen létezik, és azt is, hogy az Ethereum láncát nagyon nehéz legyen feltörni vagy átírni. Az Ethereum erről áll át az úgynevezett Proof of Stake (PoS) protokollra, amely szintén egy konszenzusos mechanizmus, és lehetővé teszi, hogy a decentralizált blokklánc-hálózatok jól tudjanak együttműködni. A Proof of Stake előnye, hogy drámaian növeli a rendszer energiahatékonyságát, mivel a bányászokat nem a kapacitásuk, hanem az általuk birtokolt Ethereum-állományok mennyisége alapján jutalmazza, ami véget vet a bányászok jutalmáért folytatott áramégető versenynek. Ez az oka annak, hogy az ETH2.0 annyival energiahatékonyabb lehet: Carl Beekhuizen, az Ethereum Alapítvány egyik kutatója szerint a legkonzervatívabb becslések szerint is 99,95 százalékos energiamegtakarítással jár majd.

Jelenleg az Ethereum is annyi energiát fogyaszt évente, mint egy közepes méretű ország, ez a 2.0-val drámaian lecsökken majd, Beekhuizen számításai szerint 2,62 megawattra. Ez már nem országos szint, hanem 2100 amerikai háztartás energiafogyasztása. A kutató szerint egy ETH2.0 tranzakció 20 percnyi tévénézés során elhasznált energiával ér fel, míg a mostani Ethereum-tranzakciók 2,8 napig tudnának árammal ellátni egy átlagos háztartást. Ehhez képest egy darab Bitcoin-tranzakció 38 napnyi áramfelhasználását fedezhetné egy háztartásnak.

A PoW protokollal alapvetően az volt a probléma, hogy a rendszer biztonságosságát az garantálta, ha a bányászó hardver hatékonyságát növelték, vagy ha több hardvert használtak. Ha egy sikeres támadást akartak megakadályozni, a bányászoknak többet kellett dolgozniuk, mint a támadóknak, és mivel a támadók valószínűleg hasonló teljesítményű eszközökkel rendelkeznek, mint a bányászok, ez egyértelműen több hardver használatát jelentette, ami több energiát is fogyasztott. A PoS azonban ezt a látszólag véget nem érő fokozást értelmetlenné teszi, és úgy növeli a biztonságot, hogy az energiafelhasználás nem növekszik vele együtt.
Hátránya is van azonban a megoldásnak: a PoS protokollok biztonsági aggályokat vetnek fel, mivel az ellenőrzési folyamatban megbízható felügyelőkre van szükség.

Bár az ETH2.0 még kezdeti stádiumban van, a felhasználók már most 4 millió tokent szereztek. Az Ethereum egyébként nem is időzíthette volna jobbkor az energiahatékonysági bejelentését: Elon Musk nemrég bejelentette ugyanis, hogy a Tesla nem fogad el többet Bitcoint az autóiért, méghozzá leginkább azért nem, mert a bányászat ennyire környezetszennyező. Bár a Tesla-guru a februárban bevásárolt 1,5 milliárd dollárnyi Bitcoinját nem adta el, a kriptovaluta a bejelentésre így is elkezdett drámaian visszaesni a piacon. Az Ethereum tehát tökéletesen használta ki a piaci helyzetet, és adott alternatívát a most éppen gazdaságilag nem a legjobb helyzetben lévő, környezetszennyező, energiaigényes Bitcoinra egy olyan valutával, aminek bányászata már teljesen elfogadható energiafelhasználással jár.

Tovább olvasom

Zöld Energia

Ilyen gyorsan még senki nem telepített napelemes rendszert

Létrehozva:

|

Szerző:

A napsütötte órák számából kiindulva azt hihetnénk, hogy Finnországban nem igazán terjedtek el a napelemek, a piac azonban elképesztő ütemben bővül. 

Mindez serkenti a vállalatokat, kedvez a technológiai innovációnak, aminek a fogyasztók is örülhetnek. Az egyik legjelentősebb fejlesztés, amelyet a helyi cégek az utóbb időkben elkezdtek ajánlani, az úgynevezett virtuális akkumulátor. Sok szakértő véli úgy, hogy a megoldásnak komoly szerepe lesz a jövő energetikájában. A finnországi piacnak is megvannak ugyanakkor a maga nehézségei. Ilyen többek között a más országokban is problémás telepítés, amely viszonylag gyakran nehezíti meg a szakemberek munkáját – szerencsére ezen a területen is egyre jelentősebb a fejlődés.

A piac egyik, ha nem a leggyorsabban telepíthető rendszere a Rauli vállalaté. Ville Tiainen, a cég vezérigazgatója szerint már több mint ezer napelemes rendszert építettek ki, amikor felismerték, hogy az installációs megoldások használata nem mindig egyszerű, és változásra van szükség. Ennek egyik oka az, hogy a bevett rendszert egy elektronikai vállalat dolgozta ki, amely nem igazán gondolkodott a telepítők fejével. Tiainen hozzátette, mivel egyre több a fekete napelem a piacon, olyan elegáns rögzítőt akartak készíteni, amely passzol a panelekhez.

A Rauli termékeit Finnországban gyártják napelem-telepítő és tetőbiztonsági szakemberek segítségével. A rögzítőknek több olyan egyedi tulajdonságaik is vannak, melyek más, korábbi gyártmányokban nem voltak jelen, és amelyek megkönnyítik a napelemek felszerelését.

Ilyen többek között az Easy Click, amely lehetővé teszi, hogy a sín és a tartóelemek között ne kelljen csavarokat használni. Tiainen szerint telepítettek már olyan száz panelből álló rendszert is, ahol a síneket csupán 20 perc alatt szerelték fel. A Rauli emellett olyan egyedi rögzítőket is gyárt, amelyeket kifejezetten az extrém, északi időjárási körülményekre terveztek. Tiainen úgy véli, az esetek 90 százalékában a különálló házakra egy nap alatt lehet telepíteni a napelemeket. Mint mondta, a Rauli termékeivel jelentősen felgyorsulhat a folyamat.

További információ: raulibrackets.fi

 

Képek: raulibrackets.fi

Tovább olvasom

Zöldtrend a Facebookon

Címkék

Ezeket olvassák